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PREFACE

This report represents the results of a study to develop the current state-of-

the-art of probabilistic methods for structural vulnerability/survivability analysis

and design. The study was performed for the Strategic Structures Division of the

Defense Nuclear Agency, as part of Contract DNA 001-77-C-0177 with N.M. Newmark

Consulting Engineering Services.

The study was monitored by Dr. E. Sevin and Captain M1. loore of DNA; their

interests and support for the study are greatly appreciated.
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I. INTRODUCTION

The analysis of strategic systems, either for the purpose of evaluating the sur-

vivability/vulnerability of a hardened system against a postulated enemy attack, or

for evaluating the effectiveness (i.e. kill potential'of a targeting plan against an

enemy installation, involves many sources of uncertainty. In this light, the surviv-

ability or weapon effectiveness cannot be determined or assured in absolute terms;

realistically, measures of assurance may be given only in terms of probability. For

these reasons, the methods and concepts of probability and statistics are pertinent

and can be useful in many aspects of strategic planning and design. How probabilistic

methods may be used most effectively in different types of strategic problems or for

different objectives, however, is not always clear. From the standpoint of design and

planning of strategic structures and facilities, the problems are similar to those of

conventional engineering; on this premise, this report will emphasize the existing

concepts and approximate methods of probabilistic analysis that have been developed

and implemented in other areas of engineering. The applicability of these methods to

strategic structural problems will also be delineated; in particular, approximate

probabilistic methods that are particularly appropriate and suitable for formulating

probabilistic bases for strategic design will be emphasized.

Probability and statistics are important in engineering analysis and design, to

be sure; however, their proper roles should be viewed from the perspective of broad

engineering implications and not merely from a mathematical standpoint. For example,

the fact that survivability and weapon effectiveness may be assured only in probability

terms does not necessarily mean that all analysis and design must be performed Drob-

abilistically. In particular, the routine design (i.e. of determining the sizes of

structural components) can still be accomplished through the use of conventional design

factors, e.g. safety factor or load factors, that are derived on the basis of achieving

specified probability of survival.

Mathematically exact or rigorous probabilistic methods are, of course, available;

however, the implementation of these exact methods to practical problems is invariably

difficult or extremely limited. Moreover, in view of the fact that the available state

of information in Eiost practical engineering problems are limited and must be supple-

mented with subjective engineering judgment, the calculational complexity that

invariably underlies rigorous methods is seldom justifiable. Approximate methods of

analysis that are consistent with the available state of data and information may be

more appropriate and effective. The material presented herein, therefore, is limited

to an approximate calculational approach that is adequate for engineering purposes.

It is believed that Lhe same approximate method is equally adequate and useful for

many strategic problems, especially those of strategic structural problems.
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1.1 Role of Probability in Engineering

Engineering planning and design in general, and engineering for strategic purposes

in particular, are of necessity based on predictions of the real world. Such pre-

dictions are invariably based on limited information and observational data, as well

as on idealized assumptions; the latter are necessary for reasons of simplicity and

practical expediency. In this light, engineering predictions are very seldom perfect;

uncertainty, therefore, is unavoidable. As a consequence, the performance (or mission

success) of an engineering system or strategic system cannot be assured with absolute

certainty. An assurance would be realistically possible only in terms of probability.

In this context, probability represents a realistic measure of assurance of performance

under conditions of uncertainty. For this purpose, the effects of all sources of

uncertainty should be included; to be sure, this must include the uncertainty associated

with the imperfection of predictions, as well as those associated with inherent random-

ness or scatter of observational data.

As with the results of other kdeterministic) methods of engineering analysis,

which provide synthesized information for purposes of developing "optimal" designs,

a probabilistic engineering analysis should also lead to the synthesis of uncertainty

information, to supplement purely deterministic analysis. This supplemental informa-

tion is particularly useful, and even necessary, when the design variables and

predictive models underlying the design process contain uncertainty. In other words,

probability provides the formal and logical framework for the analysis and treatment

of uncertainty, and for the evaluation of the effects of uncertainty on engineerinq

performance and design. These uncertainties include that associated with randomness of

available information as well as those associated with errors of prediction underlying

the process of engineering design. In this regard, the proper role of probability con-

cepts and methods is supplemental (but important) to an existing deterministic approach

for engineering analysis and design. In other words, engineering will basically remain

deterministic. Probability and statistics can be most effective if used to comnlement

the existing deterministic technology; namely, by providing the necessary basis and

tools for the explicit consideration of uncertainty.

1.2 Objectives and Coverae ofRe port

This report will summarize and illustrate the current state-of-the-art of

probabilistic concepts and methods for engineering pruposes, with special emphasis on

the potential applications of these concepts to problems of survivability and vulner-

ability of strategic structures. Effectiveness in the implementation of these concepts

and methods are discussed and illustrated; where alternative concepts and implementation

procedures are available or have been proposed, the implications of such alternative

procedures will be identified.

6



-- 

-= 

2- 

-

As with deterministic methods for engineering analysis and design, simplicity in

a probabilistic approach is important for purposes of effective engineering implementa-

tion, as well as for ease of understanding. This requirement is emphasized throughout

the report. Refinements and mathematically more exact methods are available; however,

the implementation of more rigorous methods will be at the expense of complications

and difficulty of understanding. For these reasons, mathematical refinements do not

always mean practical effectiveness.

The coverage of this report, therefore, is limited to the essential elements of

probability and statistics that can effect solutions to practical problems. For this

objective, simplification and approximations are necessary, without which the practical

usefulness of probability and statistics may remain unrecognized.

The material presented in this report, therefore, were selected and developed on

the following premises:

1. Exact methods of probabilistic analysis are not necessarily the most

appropriate or effective for engineering purposes, including applications to

strategic problems, for the following reasons:

a. Exact analyses are invariably complicated except for the simplest cases.

b. More importantly, the state of available information in most practical

applications seldom warrants exact calculations. In otherwords, when the avail-

able information is largely based on subjective judgments, mathematical rigor becomes

less important; an approximate solution that is consistent with the reliability of

the underlying information is more sensible.

2. The introduction of probability concepts will not necessarily require or

result in a different method of design and analysis (there may be some misconception

on this point). Probability serves to complement or supplement deterministic

predictions underlying engineering analysis and design; it can be most

effective if used to complement the existing deterministic prediction methods

by providing the basis and tools for the explicit consideration of the uncertainty

underlying such predictions.

The weaknesses of a purely deterministic approach have been recognized; however,

a strictly mathematical and exact probabilistic approach is also limited and fraught

with problems in implementation. It is the purpose here to identify what can be done,

by way of approximations that are necessary to implement probability most effectively,

and also develop the necessary approximate approach with emphasis on problems of

survivability/vulnerability of strategic structures.

Illustrations of the concepts and methods developed herein are limited to basic

cases; that is, they are limited to the determination of the survival probability or

design of structural components. These would include structural systems if the

system capacity and associated weapon effects are the information specified. However,

the problem of determining the survival probability of a system on the basis of the

7



survival probabilities of its components is not covered; this latter problem requires

probabilistic system analysis and is beyond the scope of the present work.

There is so-me siniilarity between the basic problem of target planning to achieve

a specified kill probability and the problem of design to achieve a survival prob-

ability; for this reason, most references to targeting or target planning are intended

only to demonstrate this similarity. Undoubtedly, there are many aspects of the

targeting problem that are difficult or have no counterpart in survivability design;

such problems, of course, are also outside the present scope.

The basic analytical tools for uncertainty evaluation, and analysis of its effect

on the probability of survival (or kill) of a strategic system are described and

illustrated in Chapter 2. Alternative approaches for implementing probability in

engineering for strategic purposes are reviewed in Chapter 3; the implications of each

approach are also examined. Also, in Chapter 3, the survivability and design of under-

ground tunnels and of equipment to nuclear weapons effects are discussed in the context

of survival (or kill) probability. Chapter 4 summarizes the main results and emphases

of the Report, and describes several suggestions for additional study.

8



II. PROBABILITY, UNCERTAINTY, AND SURVIVABILITY

2.1 Engineerin Interpr~tation of Probability

For engineering purposes, a calculated probability (e.g. of survival) represents

a measure of assurance of performance (or mission success) of an engineering system;

for this purpose, it should reflect the consequences of all sources of uncertainty

(in one form or another) on the performance and design of the system. Invariably,

such a calculated probability is based on the logical synthesis of available infor-

mation (including judgmental information), obtained through established physical

relationships for the pertinent problem. In most practicdl situations, where the

pertinent data are extremely limited, a calculated probability would be difficult to

justify if interpreted strictly on the basis of the frequency definition of probability,

which is based on a large number of repeated observations; experimental statistical

verification may be required only of the information for the individual variables that

underly the calculated probability. That is, verification may be expected and possible

only for the statistical information 'of the constituent variables, the synthesis of

which is the basis of the calculated probability. A calculated probability, obtained

in this manner, nevertheless remains useful and significant for engineering application,

in the same sense that the result of a conventional deterministic analysis is useful

for engineering purposes.

Purposes of a Calculated Probability -- Depending on whether the purpose is the

assessment of survivability (or kill) or the formulation of criteria for design, the

significance of uncertainty and of the associated probability may be defined and used

differently, as described below.

1. Assessment of Survivability -- In the case of assessment, the objective is to

seek an estimate of the true probability of survival or kill. Because the parameters

(particularly of the mean or median) of the probability distributions used in the

determination of the estimate may be in error (arising from the imperfection of the

model and/or insufficient data), the estimate would contain uncertainty. This

uncertainty has been expressed in terms of a confidence interval (e.g. 90' confidence

limitsTRW 1977). In view of the fact that the uncertainties in the parameters must

invariably be assessed subjectively, a confidence statement would be much too precise,

which may not be warranted in light of the subjective basis for such statements.

In the case of assessment, the calculated probability may be limited to the

consequence of the inherent variability, representing the uncertainty due to randomness

only. Model imperfection and lack of sufficient data will introduce uncertainty into

the estimate of the true probability; this uncertainty may be expressed in terms of

a range of possible values within which the true probability will lie. In light of

the fact that the basis for the range is often purely subjective, expressing this

range simply in terms of its dispersion (e.g. its standard deviation) would be less

precise but is more consistent with the subjective basis for its estimate.

9
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2. Formulation of Criteria for Design -- In the development of criteria for

design to insure a given probability of survival, the objective is to formulate a

design that will cover all sources of uncertainty, including those due to "ignorance."

In otherwords, in design under conditions of uncertainty, the objective is to make

proper allowance (e.g. through a factor of safety) to cover all sources of uncertainty

including those due to prediction error or ignorance, such that a specified level of

survivability is achieved. In this latter case, therefore, the inherent variability

as well as uncertainty due to model imperfection and insufficient data may be combined

in determining the proper factors for design.

For the purpose of design formulation or decision-making, unambiguity would be

desirable or essential. For this latter purpose, therefore, developing the required

design criteria based on a point estimate of the survival probability reflecting the

combined effects of all sources of uncertainty will avoid any ambiguity.

In other words, for the formulation of design, a point estimate of the survival

probability, or kill, would be preferable (as opposed to an interval estimate) for

reasons of uniqueness and/or unambiguity; whereas in the assessment of the true

probability, a measure of error or dispersion on the estimated probability may also

be specified.

2.2 Basic Considerations and Formulations

The survivability or vulnerability of a structure or facility to a given environ-

ment is, of course, a matter of the available resistance of the structure relative

to the applied weapon effect. If the actual resistance and weapon effect can be

precisely predicted, there would be no question about the assurance of survivability;

conversely, if there is precise information on the weapon effect and the capacity of

an enemy installation, the weapon system necessary to insure destruction may also be

ascertained. However, in the presence or under conditions of uncertainty, the survival

or destruction of a given structure cannot be assured in absolute terms; realistically,

it is only possible to insure survival or destruction in terms, or to the extent,

of a given probability.

Because of uncertainty, the resistance R and weapon effect S may be described as

random variables. Complete description of these random variables may be accomplished

with the respective probability density functions (PDF) fR(r) and fs(s), as shown

graphically in Fig. 1.

As random variables, the actual values of R and S, therefore, may be specified

only with their respective probabilities; for example,

P(r > R r0 + dr) = f R(r ) dr;P~r o  R o

or, r

P(R <_ r ) = fR(r) dr.

10



f (s)

values of s or r

FIG. I DESCRIPTION OF R AND S IN TERMS OF PDF

where, fR(r) is the probability density function, or PDF, of R.

In this light, survival then is the event (R > S); conversely, failure is the event

(R < S). Accordingly, the probability of failure is,

= F FR(S) • fs(s) ds (1)

0

FR(Si) AFs(si) (la)
all s.1

where, FR(s) is the cumulative probability of (R < s). Alternatively, the failure

probability may be expressed also as,

= [ - Fs(r)] fR(r) dr (2)

0

X [I - Fs(ri)] AF R(ri) (2a)

all r.I

where, Fs(r) is the cumulative probability of (S < r).

The probability of survival then is the complimentary probability or

PS = 1 - PF (3)

As represented in Eq. 1 or 2, the probability of failure pF, (or of kill) is

related to the overlapping region (actually the convolution of probabilities) between

fR(r) and fs(s) as indicated in Fig. 2. Accordingly, the probability of failure is a

function of the relative positions between fR(r) and fS(s) as may be seen in Fig. 2;

11



in particular, observe that as the relative positions between fR(r) and fs(s) increases,

the probability of failure decreases -- PF2 I PF1 in Fig. 2.

The probability of failure (and also of survival) depends also on the degree of

dispersion in the possible values of R and S; this may be observed succinctly in Fig. 3.

Observe that for the same relative positions between fR(r) and fs(s), the overlapping

region (and thus pF) increases as the dispersion in the possible values of R and S

increases -- compare the overlapping region of the solid curves with that of the dashed

curves in Fig. 3.

In general, the discretized forms represented by Eqs. la and 2a would be useful.

However, for certain probability distributions of R and S, closed-form analytical

results are possible and have been derived. In particular, the lognormal distribution

is of special interest as it has been used widely in strategic problems; accordingly,

specific results involving the lognormal, as well as the normaldistributions for R

and S are illustrated herein.

Suppose that R and S are statistically independent random variables, and their

distributions are individually lognormal with the followving parameters:

Parameters of R Parameters of S

r = median R s = median S

2 R variance of 'n R 2 = variance of n S
"R S

where, n stands for natural logarithm; then, the probability of survival PS, is

(n / s ) n )()
where:

- r/s, is the "median safety factor."

/2 2
R S

:(x) = the standard normal probability

Alternatively, if R and S are statistically independent normal variates, the

corresponding survival probability would be

PS ( i = k((5)

R S R S

12
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where: ; R = mean resistance

= mean weapon effect

R,'S = standard deviations of R and S, respectively.

R,S = coefficient of variation (c.o.v.) of R and S, respectively.

=R/1S
, the "mean safety factor".

Other forms of distributions for R and/or S, of course, may also be used to cal-

culate the appropriate survival probability. Properly, the most appropriate distri-

butions for R and S should be used; selection of these distributions, however, often

have to be based largely on judgment. This may be guided by certain physical or

logical considerations; for example, if the process is largely multiplicative, the

lognormal distribution may be appropriate, whereas if it is largely additive, the

normal distribution may be more appropriate. Finally, if there is sufficient data to

indicate or favor particular distributions for R or S, then such distributions ought

to be used; in practice, however, it is seldom that there is sufficient data for this

purpose. For general distributions of R and S, numerical integration of Eq. 1 or 2

may be necessary to evaluate the probability of survival or failure; in such cases,

the discretized form of these equations, namely Eq. la or 2a, would be convenient.

Probability-Based Design Relationships -- In the context used herein, "design"

refers to the determination of the required capability of a structure or facility to

resist a given weapon effect. This may be the determination of the median structural

resistance necessary to insure survivability against a given weapon effect; similarly,

it could also be the determination of the weapon size necessary to inflict a level of

damage on an enemy installation. Since it is not possible to give absolute assurance
of survivability (or kill), the objective of a design is to insure survivability (or

mission success) in terms of probability. Such designs, however, can be accomplished

without probabilistic analysis; i.e., for this purpose, certain relationships or

probability-based criteria has to be developed, on the basis of which the routine

process of design or sizing of a given system can be carried out with the usual con-

ventional (deterministic) procedure.

The developmenC of the necessary design relationships may be illustrated also

for the lognormal or normal distributions for R and S as follows:

Referring to Fig. 2, design may be viewed as the determination of the position of

fR(r) sufficiently far from the position of fs(s) so that an acceptable probability of

failure (or survival) is achieved. The relative positions between fR(r) and fS(s)

may be measured by the ratio of the medians, namely = r/s which may be called the

"median factor of safety." In otherwords, a specified probability of survival would

be achieved if the required median resistance is given as

14



r S

where s = the median weapon effect,and = the required median safety factor represent-

ing the relative positions between fR(r) and fs(s). The problem of design, therefore,

can be reduced to the determination of the appropriate median safety factor,, in

order to achieve an acceptable probability of survival PS. Development of the

relationship between and pS, therefore, is necessary which can be accomplished as

follows.

Inversion of Eq. 4 for , we obtain

Se' (6)

where = 1(ps), the value of the standard normal variate alprobability pS.

It may be observed froM Eq. 6, that for given values of , the required median

safety factor is a function of the survival probability pS. This relationship is

plotted in Fig. 4 for various values of .

Similarly, if the distributions of R and S are respectively normal, the required

design relationship may also be developed as follows: In this case, inverting Eq. 5

for the mean safety factor gives

1 2 + 2 2 22 l+ 2 + 2
R S R:S R S (7)

22 2 2
R R

where again, -ls), and

R the coefficient of variation of R and S, respectively.R' S

Eq. 7 is presented graphically in Fig. 5.

It is significant to observe from Figs. 4 and 5, or Eqs. 6 and 7, that the required

safety factor is a function of the c.o.v. representing the total dispersive uncertainty

underlying the design. For this reason, the quantitative determination and evaluation

of credible c.o.v.'s are all-important in the development of proper bases for design;

these should include in particular, the c.o.v.'s associated with prediction errors.

Generalizations -- The resistance R and the weapon effect S may, respectively,

be functions of several random variables, in which the probability distributions and

associated parameters of the individual variables may be known or assumed, in such

cases, the distributions of R and S will obviously depend on those of the constituent

variables. Theoretically, the required distributions for R or S (in this case) may

be derived frow; those of the respective constituent variables. For example, if

R r g(RI,R 2 .... Rn) (8
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where the density functions of the constituent variables R , R . Rn are given,
the distribution function of R can be shown (for statistically independent RI , R2,

... R) to be

FR(r) = .. rR (r1 ) fR (r2" f R (rn)dr1  .drn (9)
1gr ' . ' 2 n

The distribution function of S may similarly be derived as a function of the

individual weapon effect variables. The required probability of failure, or survival,

may then be obtained through numerical integration using Eq. 1 or 2.

Deriving the probability distributions of R and S as functions of the distributions

of the respective constituent variables (i.e., through Eq. 9) is laborious; theoretically

it may be performed numerically. However, the probability distributions of the con-

stituent variables, such as those of R, R2 1 ... . Rn , are generally not that well known;

for this reason, any effort to derive FR(r) and/or Fs(s) rigorously in the manner of

Eq. 9 may not always be warranted. Of course, if the probability distributions of the

constituent variables, such as fRl, fR2 ... ' fRn are well established, then the correct

derived distribution FR(r) ought to be derived through Eq. 9. However, it is very

seldom that there are cases of this nature in most practical problems.

For practical purposes, the forms of the distribution for fR(r) and fs(s) may

be prescribed, taking into consideration relevant physical and mathematical consider-

ations. For example, if the functional relation for R, i.e., Eq. 8, is principally a

product of several resistance variables, the distribution for R may reasonably be

prescribed to be lognormal, by virtue of the central-limit theorem; whereas, if R

(or S) is largely the sum of several variables, then its distribution may tend to be

normal for the same reason. In this regard, as there are numerous subjective factors

that are significant in strategic problems whose affects may be assumed to be multipli-

cative, the assumption of the lognormal distributions for both P and S, therefore, could

be reasonable.

Furthermore, in the range of probabilities 6f interest to strategic problems,

i.e. 0.01 pS _ 0.99, the calculated probabilities are not very sensitive to the

prescribed distribution form; for this reason, the probability calculated on the basis

of reasonably prescribed distributions may often be sufficient for practical purposes.

Thus, for stategic purposes, the probability of survival (or failure) calculated on

the basis of judgmentally prescribed form of distributions for R and S may be adequate.

In light of the above considerations, the lognormal or normal distributions are

attractive by virtue of the resulting mathematical simplicity; therefore, unless there

is evidence to indicate otherwise, either of these two distributions may be used to

derive useful results.
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Observations -- Irrespective of whether closed-form analytical results can be

obtained, or numerical integration is necessary, the survival probability (as illus-

trated explicitly in Eqs. 4 and 5) may be seen to be a function jf the relative

positions between fR(r) and fs(s) and of the degrees of dispersion in fR(r) and fs(s).

The relative positions between fR(r) and fs(s) may be measured in terms of the ratio

of the median values r/s or of the mean values r/s, which may be called the "central

factor of safety."

It might be emphasized that the central safety factor, = r/s or = r/s, which

is the ratio of the mean or median values of R and S, is a deterministic quantity;

its determination, therefore, involves purely deterministic analysis. The standard

deviation or coefficient of variation, however, is a statistical quantity; its deter-

mination, therefore, requires statistical methods as will be described below. It

is important to recognize this difference; i.e. that statistical methods are required

only for the purpose of assessing and analyzing the degree of dispersion (representing

dispersive uncertainty), whereas existing deterministic methods must still be used

to determine the central safety factor. This recognition is important for delineating

the proper role of probability concepts in engineering evaluation and design.

2.3 Modelling and Analysis of Uncertainty

2.3.1 Introductory Remarks

In engineering, when we speak of uncertainty we are really concerned with the

question of "How well can we predict (or estimate) the state of nature?"; that is, it

is the uncertainty underlying one's prediction of the real world that is pertinent.

Uncertainty, therefore, arises from one's inability to make a perfect or precise pre-

diction of reality. In this sense, uncertainty may be due to inherent randomness or

to the imperfection in the method of prediction; i.e. both the randomness in the physical

process and any imperfection in the prediction of the process contribute to the total

degree of uncertainty.

If the underlying phenomenon is random, prediction is usually limited to the

estimation of a central value (e.g. the mean or median) and associated standard deviation

or coefficient of variation. Seldom will there be information and data sufficient to

determine the complete probability distribution, such as its PDF, and thus when necessary,

the PDF may be prescribed judgmentally, taking into consideration relevant physical

or mathematical factors as mentioned earlier.

Of first order importance is the uncertainty associated with error in the prediction

of the central value (mean or median); although there may be error also in the estimated

standard deviation or c.o.v., tht uncertainty associated with this latter error is of

secondary importance. In other words, aside from the uncertainty inherent with the

randomness of the physical process, there is also uncertainty associated with the in-

accuracy in the prediction which may be limited to the error in the estimation of the
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central value.

Potential error in the estimate of the central value may contain a systematic

component (bias) and a dispersive component (or random error). The systematic error

is due to factors that will tend to bias the predicted estimate consistently in one

direction, whereas the random error will contribute an uncertainty representing the

range of possible values within which tie correct central value may lie.

2.3.2 TyRes and Sources of Uncertainty

As alluded to above, uncertainty may arise from (i) basic randomness, or

(ii) error of prediction. Each type of uncertainty may be described further as

follows:

Uncertainty due to Randomness -- Uncertainty is associated with randomness because

the exact realization of a physical phenomenon is not completely predictable. The

conceivable or possible realizations may be described only in terms of a range of

possibilities with their respective relative likelihoods of occurrence (e.g. with a

probability density function). In other words, if the state of nature is basically

random, it cannot be described with a deterministic model; its description must include

a measure of its inherent randomness and thus uncertainty. For practical purposes,

the required description may have to be limited to the main descriptors of interest,

which are the central value (such as the mean or median) and its measure of dispersion

(e.g. standard deviation or coefficient of variation). Available observational data

can be used to est;mate the central value and the degree of dispersion of the possible

realizations.

Example

Suppose that the compressive strength of concrete used in a major structure is

of interest. For purposes of illustration, assume that 15 cylinders were sampled from

the concrete mixes used in the construction, and tested in compression with the follow-

ing results:

6.5 ksi 6.1 ksi 4.7 ksi

4.3 4.8 5.7

5.2 5.5 5.2

5.8 4.2 4.1

5.0 5.1 6.3

On the basis of these observations, the sample mean and sample standard deviation are

obtained as follows:

Sample Mean, = 5.23 ksi

Sample Standard Deviation, = 0.75 ksi

The corresponding coefficient of variation, therefore, is

0.75
- 5.23 - 0.14
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The above sample mean, = 5.23 ksi, is of course an estimated value of the true

mean strength of the concrete (which must remain unknown). The fact that there is

significant scatter in the observed strengths of the different cylinders gives rise

to uncertainty in the actual strength of any parts of the structure; this is the
uncertainty due to the inherent randomness of concrete strengths, and is measured by

the c.o.v. of 0.14.

In addition to the uncertainty due to randomness as represented by the above

c.o.v. of = 0.14, there may be additional uncertainty associated with errors in the

estimation of the above mean value, as described below.

Uncertainty iprediction (model imperfections) -- A model (e.g. theoretical or

empirical equation) or method used for predicting or estimating reality, will generally

be imperfect; this is especially true of models used in engineering. As used here, a
"model" is meant to be any technique or method for predicting or estimating the real-

world condition. Such imperfections may lead to systematic error (i.e. bias) as well

as dispersive error (random error) in the prediction. As observed earlier, if the

underlying physical phenomenon is random, the prediction usually pertains to the

central value of the underlying phenomenon.

For example, from a set of experimercal data, the true mean-value may be estimated

with the sample mean of the data, as illustrated above. Conceivably, if the same

experiment were repeated and other sets of data were obtained, the sample mean esti-

mated from each set of data would likely be different; the collection of all of the

sample means will also have a mean-value, which may be different from the individual

sample means, and a corresponding standard deviation. Conceptually, the mean-value

of the sample means may be assumed to be the true mean-value. Then, the difference

(or ratio) of the available sample mean to the mean sample mean is the systematic

error or bias, whereas the c.o.v. or standard deviation of the several sample means

is the dispersive error. Bias may be caused also by factors not accounted for in the

model and that tend to consistently bias the estimate in one direction (or the other).

Referring again to the example discussed above, there is first of all an

additional random sampling error which is given by

A1 = 0.14/i-5 = 0.04

The estimated mean concrete strength of 5.23 ksi may contain further error. For

instance, the concrete cylinders may be cured under laboratory condition which would

tend to raise the strength over that in the field; also, compaction and direction of

casting may also reduce or influence the strength of field concrete, whereas confine-

ment of the concrete will tend to increase its strength. It is, of course, difficult

to evaluate or determine the effects of these extraneous factors on the strength of

field concrete. Suppose that in the judgments of experts, the strength of

laboratory concrete cylinders is 10% to 21% higher than the strength of field-poured

specimens (Bloem, 1968). This information, therefore, suggests that the mean strength
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of field concrete will range between 10'. and 21'. lower than that of corresponding

laboratory concrete cylinders. On this basis, and assuming a uniform probability

distribution within this range (see Section 2.3.5), the systematic bias in the esti-

mated mean concrete strength of = 5.23 ksi would be,

mean bias factor, .(0.79 + 0.90) = 0.85;

and the corresponding dispersive uncertainty in the estimated mean value, expressed

in c.o.v., is

0.90 - 0.79)
2 0 0.90 + 0.7 -0.4

The total 'dispersive uncertainty in the estimated mean-value, therefore, is

2.2
/2 2

0.042 + 0.042 = 0.06.

The concepts presented above are merely extensions or generalizations of the

notion of estimation error that is well-established, for example in measurement

theory (Parratt, 1961). In measurement theory, the estimated mean-value from a

set of observations is usually used to represent the true measurement (state of

nature); the error of the estimated mean-value consists of systematic and dispersive

(or random) components. The systematic component may be due to certain well-identified

factors whose effects can be determined (at least judgmentally) and thus can be

corrected through a fixed or constant correction; whereas, the random component,

called standard error in measurement theory, may be represented as a range of possible

corrections which may be handled through statistical techniques. The systematic

error, therefore, is a "bias" in the prediction or estimation, whereas the random

error represents the degree of "dispersiveness" of the possible errors.

In general, therefore, the systematic error in prediction may be corrected by

applying a constant bias correction factor; however, the dispersive error requires

a statistical treatment and may be represented by the standard deviation (or coeffic-

ient of variation) of the predicted mean-value. In other words, the systematic bias

is a recognizable fault in the model that will consistently underestimate or over-

estimate the etate of nature, whereas the dispersive error is the statistical error

in the estimited mean or median value. Objective determination of the bias, as well

as of the dispersive error, would rpquire repeated data on the sample mean (or median)

values as discussed previously; data for these purposes, however, are invariably

limited and hence must be augmented by judgments. The above discussions may be

summarized as follows:
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I. Through methods of prediction, we obtain (for a random phenomenon):

= estimate of the mean-value

= standard deviation (representing randomness)

2. An assessment of the accuracy or inaccuracy of the prediction, specifically

with reference to., obtaining;

= mean bias (or systematic error in the predicted

= dispersive error in ::.

In other words, prediction (in the case of a random phenomenon) usually yields an

estimate of the mean or median value, ., and associated c.o.v. ; whereas, error in

the estimated mean-value may include a systematic component and a dispersive

component .

Remarks -- It is sometimes difficult to distinguish between randomress and the

dispersive error of prediction. Indeed, all dispersive uncertainty may be the result

of our inability to describe nature precisely. Randomness may be the result of having

to use a relatively crude model; otherwise, if a more refined model were possible the

degree of scatter in the observational data may be significantly reduced. For example,

in determining the strength of a material, if the strength is described at the molecular

level the measured scatter would be much less than that of the strength measured

through an engineering specimen. Therefore, the uncertainty associated with randomness

is really also due to imperfection'; . the material model. From this standpoint, a

clear distinction between dispersive uncertainties due to randomness and model imper-

fections may become clouded. For certain purposes, such as the development of relation-

ships for design, it is the total degree of uncertainty that is important, irrespective

of its source and type; hence, any effort to distinctly separate these uncertainties

into randomness and model imperfections, and to separately evaluate their effects,

may sometimes be unnecessary or unimportant.

2.3.3 Measures of Uncertainty_

The uncertainty due to inherent randomness requires statistical measure; normally

this may be in terms of the standard deviation or the associated coefficient of

variation. In terms of the coefficient of variation, the uncertainty due to randomness

will be denoted by .

Uncertainty in prediction, of course, is associated with the errors in the pre-

diction. Again, by model is meant any means or method for predicting or estimating

the real condition. In practice, the prediction error may be limited to the error in

the estimated central value (mean or median); the systematic error-represents a

consistent bias in the estimated mean or median value and therefore may be measured

by a constant bias factor. The random error represents the dispersiveness of the
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estimated mean or median; this component may also be measured by the coefficient of vari-

ation, and will be denoted by A , in contrast to the randomness which is ,.

Whereas the systematic error can be accounted for by applying a constant bias factor

to the estimated mean or median value, the uncertainty associated with randomness, ,

as well as model imperfections, A , requires statistical treatment. Such dispersive

uncertainty may be expressed in terms of the standard deviation or the coefficient of

variation as indicated above. However, other quantities may also be used for the same

purpose. In particular, for strategic purposes in which the lognormal distribution is

widely used, the standard deviation of the logarithm is also a convenient measure of

the dispersive uncertainty. The relationships between these alternative uncertainty

measures are as follows:

Denote, a= standard deviation of X;

x= coefficient of variation of X;

Cx = standard deviation of zn X.

where zn stands for the natural logarithm.

Then
= X

x xx

where, Jx is the mean-value, and (Ang and Tang, 1975)

2 x2

conversely,

x x x
and, 2

:2 = ; -l1
x

It may be emphasized that whereas the standard deviation, ux, and the coefficient of

variation, x refer directly to the dispersion in the possible values of X, the measure

x refers to the dispersion in the values of n X. This means that either ax or -,x is

a measure of the dispersion in X; whereas, strictly speaking, rx is a measure of the

dispersion in n X.

2.3.4 Model for Uncertainty Analysis

The seemingly different types and sources of uncertainty discussed above may be

analyzed with the following model.

Suppose that the true state of nature is X, whose actual realization is unknown

(e.g., the true strength of concrete). Prediction or estimation of X, therefore is

necessary; for this purpose, a predictive model, denoted X, may be used. As X is a
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model of the real world, imperfections in the model can be expected; the resulting pre-

diction, therefore, will contain error, and a correction N may be necessary. Then, the

state of nature may be represented by (Ang, 1973)

X = NX (10)

If the state of nature X is inherently random, the model X should be a random variable.

When data are available, for example, in the form of a set of sample observations

(x5 x2 .... x ), then the mean k and variance o of X may be estimated using standard
V 9n

statistical techniques; from which the coefficient-of-variation is 6 = T ,representing

the uncertainty due to randomness.

For generality, the correction N may also be considered to be a random variable,

whose mean-value v represents the mean correction for systematic error or bias in the

predicted mean-value, x, whereas its coefficient-of-variation, A, represents the

dispersiveness in the possible error of the predicted mean-value Y (i.e. the random

error). In particular, A would include the random error in x due to sampling which is

given by 0, where n is the sample size of the available data. However, A as well as v

should include also the effects of factors not reflected in the data.
It is reasonable to assume that N and X are statistically independent; on this basis,

the correct mean-value of X, following Eq. 10, is,

x v x (lla)

Of course, if there is no bias in x, then Px = K; moreover, onca the bias is determined,

the "correct" mean-value p x may be used.

The total c.o.v., representing the total dispersive uncertainty in the prediction of

X then becomes,

+ A (llb)

The above discussion, of course, pertains only to a single variable. Oftentimes

the bias and uncertainty in a function are of interest. For example, if Y is a function

of several variables X1, X2 9 ... . X n , or

Y = g(X1, X2  ..... Xn) (12)

in which PX. = vi xii and s2i, for i = 1, 2, 3, ... , n, have been determined, then the
11

mean-value and uncertainty of Y are of concern.

In this case, an idealized (or model) function g could be used, and a correction Ng

may be necessary, such that

Y N Ng g(Xl,...,X n )
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ir w;hich N has mean-value v and c.o.v. A On the basis of first-order approxi-

mations (Ang & Tang, 1975), the mean-value of Y is,

- Y g g(wxl, X2  ....' ix) (13)

where v is the bias in g(. .. ), and

2  2 n n 13cC x

a i=l j= l 1

in which:

Pij = correlation coefficient between Xi and Xj; and

c = -, evaluated at J ,3 'Ci  13 i' l x x25 " 'Un"

The above first-order approximate mean-value of the functional Y may be improved

using a second-order approximation (Ang and Tang, 1975). In this case, we obtain an

improved mean-value as follows (for uncorrelated X1, X2 9 ..... Xn)

*(px ' x '. + i l 2

whereas, if the variates are correlated,

y V g( I x ) + 1 (, 2 _ x  ox  (15a)= * • • n"2 x.3x. Pij .x .
n 13 l ll

2.3.5 Estimation and Assessment of Uncertainty Measures

The implementation of the above model requires the assessment and quantitative

estimation of the uncertainty measures associated with the individual variables

X1 X2 ' .... Xn' Clearly, the validity of a calculated probability will depend on the

credibility of the uncertainty measures evaluated for each of the variables. Methods

for these purposes will depend on the available data and information (or the lack

thereof), as well as the form in which the available data are presented. Some of these

methods are suggested below; however, they are not all-inclusive, and depending on the

situation at hand, other methods mdy have to be devised as necessary.

When Sample Data are Available -- If a set of observational data is available; for

example, a set of sample data xl , x2 . ... xn. Using common statistical estimation

techniques, the mean-value of the underlying random variable is obtained as

nl
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whereas, the corresponding variance would be

2 1 2
X = n-iy=1 i

From which, the uncertainty associated with randomness (in this case) is given by the

C.O.V.
6 -
x x

The estimated mean-value may not be totally accurate relative to the true mean. The

estimated mean-value given above is unbiased; however the dispersive error of the

estimated mean-value x, which is the standard deviation of x, becomes (Ang and Tang,

1975);

axxx- -

Hence, the associated c.o.v. of x is,

x
x -

x

It should be emphasized that the above dispersive uncertainty in x is limited only

to the sampling error. In particular, the uncertainty in x due to other factors cannot

be assessed from the available data, if the effects of these factors were not included

in the tests from which the data were obtained.

When Range of Values is Known -- In engineering, the information that may be

available is often in the form of the lower and upper limits of a variable. In such

a case, the mean-value of the variable and the underlying uncertainty may be estimated

on the basis of the given range and a prescribed distribution within this range. For

example, for a variable X, if the lower and upper limits of its value are x, and x u'

the mean and coefficient-of-variation of X may be determined as follows:

Prescribing a uniform PDF between xZ and xu, the mean-value is then,

- (x + x
2 R. u

whereas the c.o.v. is (Yucemen, et al, 1973),

X - X

x =0.58 (ux x + x
u

Alternatively, if a symmetric triangular distribution is prescribed within the limits

x, and x the coefficient-of-variation becomes

x - x
x 0.41 (x + ).

u Z
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On the other hand, if the range corresponds to a given confidence bound, then the c.o.v.

may be evaluated accordingly assuming an appropriate underlying distrubiton (e.g.

normal or lognormal).

Purely on the basis of the data, the estimated mean-value may not contain any

bias (e.g. if an unbiased estimator is used). However, if there are important factors

whose effects were not reflected in the data,then the effect of such factors may intro-

duce bias into the estimated x. The determination of such bias (i.e., v) may often

have to be based on engineering judgment.

Functionals -- The most common form of data or information that may be available

for the statistical analysis of a functional is that from regression analysis. For

example, in Fig. 6 is shown a hypothetical scattergram of Y as a function of x. From

the scatter of the data, a regression equation (either linear or nonlinear as appro-

priate) may be developed on the basis of least squares error. The regression equation

then gives the conditional mean-value of Y as a function of x, whereas the condi-

tional standard deviation of Y for given a:, ayI x, represents the randomness about the

regression equation; from which the conditional coefficient-of-variation is,

Ylx -
y

in which y 4s given by the regression equation. There may be bias in the regression

equation; this could arise from factors that were neglected in developing the data of

Fig. 6. The effect of these factors on the regression equation, therefore, represents

the bias in the derived regression equation; determination of this bias again may have

Y
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to be based on subjective judgment, unless additional data can be developed to evaluate

the effects of these factors on the regression equation. Such information, however,

is seldom available.

Comments on Estimating Uncertainty -- It may be emphasized that although the

dispersive uncertainties due to randomness and those associated with model imperfec-

tions may have to be assessed or estimated separately, the distinction between these

two sources (or types) of uncertainty may not always be fruitful or necessary. In

particular, both types of uncertainty will contribute to our inability for absolute

assurance of survivability or kill potential; therefore, whether the uncertainty is

due to randomness or to the dispersive error in prediction may not be that important.

In problems of assessment, distinguishing between these two types of uncertainty may be

more appropriate; however, in developing relationships for design or for decision-

making, such a distinction would be unnecessary and serves only to introduce ambiguity.

The scatter (or dispersion) in most data from observations are the/result of

randomness, and therefore are appropriate for determining the uncertainty due to

randomness. Seldom is there data available for assessing the uncertainty due to

model imperfections; for this purpose, data showing the scatter in the estimated mean-

values would be required. To obtain the scatter on the mean-value from measured data

would entail multiple sets of observations; i.e., one mean-value from each set.

Clearly, the data necessary for estimating the uncertainty due to model imperfections

would be more extensive than those required for evaluating randomness.

Invariably, therefore, the uncertainty associated with the estimated mean-value

(model imperfections) must be assessed largely on the basis of engineering judgment.

This may take the form of a range of possible values for the true mean; given the

range of the possible mean-values, the associated c.o.v. may be evaluated by assuming

a probability density function (PDF) within the range.

The examples illustrated in Sect. 2.5 may serve to clarify some of the concepts

and procedures described above.

2.4 Conditional and Total Probabilities

The notion of a conditional probability may be useful for special situations; this

is particularly pertinent when considering problems in which certain key information is

missing or when the uncertainty is very large. For example, when the mean-value is

essentially unknown or when its estimate could potentially contain very large error;

i.e. large c.o.v. A . Such situations are often encountered in target planning, in

which the capability of a given target may have to be estimated with virtually no

information. In these cases, the required probabilistic analysis (e.g. probability

of kill) may have to be based on certain specific assumptions, and thus a conditional

probability is appropriate; whereas if several assumptions (or conditions) are possible

and their relative likelihoods may be postulated, then the total or expected probability

may be useful.
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The following examples may illustrate these concepts.

Example -- Suppose that the potential or conceivable site conditions of an enemy

installation can be classified into one of three possibilities, which may be described

as follows:

Site Condition A -- On soft soil

Site Condition B -- On medium stiff material

Site Condition C -- On hard rock

In planning a targeting strategy, information regarding the site condition of the

enemy's installation obviously would be important. In this regard, the information

available from intelligence could be in one of the following:

Case I -- The site condition is completely known; in this case, of course, the

appropriate site condition should be considered and the other two possibilities

discarded for the particular enemy installation.

Case 2 -- The ground condition of the site is only partially known; for example,

intelligence might say that the site is most likely to be on hard rock, but could also

be on medium or soft material. In addition suppose that in the judgment of the target

analyst the relatively likelihoods of soft, medium, and hard ground are 7, 2, and 1.

Case 3 -- The condition of the site is completely unknown (absence of intelligence);

however, the above three possible ground conditions are all-inclusive. In the absence

of other information, the three possible ground cor.ditions may be assumed to be equally

likely for the site, or other relative likelihoods may be judgmentally prescribed.

Properly, each of the three cases stipulated above should be treated differently.

Obviously the information on the site condition diminishes from Case 1 to Case 3, and

this fact should be taken into consideration.

Suppose further that the probability of kill, PK' corresponding to each of the

three ground conditions at the site are, respectively, as follows (for a given weapon

yield and CEP):

Site Condition PK

A 0.9

B 0.5

C 0.1

There are, of course, conditional probabilities; i.e. conditional on the site condition

of the target.

Depending on the intelligence information, the probability of kill may be evaluated

as follows:

If there is complete information (i.e. Case 1) regarding the site condition, the

probability of kill would be

PK = 0.9, or 0.5, or 0.1
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depending on whether site condition A, B or C applies.

However, if there is partial intelligence information, as described in Case 2

above, the probability of kill would be calculated as,

x 0.9 + 2 x 0.5 + - x 0.1 = 0.74

Whereas, if there is no information (Case 3) on the ground condition of the enemy

installation, i.e. absence of intelligence, the three possible site conditions may be

assumed to be equally likely, and the corresponding probability of kill would be

PK = 1/3 (0.9 + 0.5 + 0.1) = 0.5

The probability appropriate in Case 1 above is a conditional probability; whereas

in Cases 2 and 3, it is a total or expected probability.

Special Observation -- In Case 2 above, if the relative likelihoods between soft

and hard ground were reversed; i.e. 1, 2, and 7 for soft, medium, and hard ground,

the probability of kill with the same weapon system would be

1 0.90 5 + 7x 0.1 = 0.26

Observe that this is less than the PK= 0.5 of Case 3 (absence of intelligence), which

may appear to suggest that "ignorance is bliss." However, if the ground condition is

more likely to be hard than soft, the probability of kill should be closer to 0.1, and

therefore the availability of the partial intelligence information simply points out

that the weapon system would most likely be inadequate, whereas without the intelli-

gence information the targeter may erroneously use the weapon believing that PK = 0.5.

Example -- A similar situation could arise also from a strategic defense standpoint.

The survivability of a structure or facility could depend on the weapon system used by

the enemy; for example, an underground installation may be more vulnerable to a single

large-yield weapon than to a number of small-yield weapons. That is, there are two

possible enemy threats, namely threats A and B; the survival probability of the installa-

tion will depend on the threat. Suppose that these are as follows:

Threat PS

(A) Single large weapon 0.2

(b) Several small weapons 0.9

If there is information on the threat, then the survival probability is either 0.2 or

0.9 depending on whether the enemy uses threat A or threat B. However, if intelligence

information is not definite; only that there is a much higher likelihood of threat B

than threat A, say by a factor of 3 to 1, then the survivability would be
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PS = 1/4 x 0.2 + 3/4 x 0.9 = 0.73

whereas, if there is no information on the enemy threat (absence of intelligence) the

two threats may be assumed to be equally likely; in which case, the survival prob-

ability would be

PS = 1/2 (0.9 + 0.2) = 0.55

The above examples should serve to emphasize that when certain information is

available, it defines the appropriate conditional probability; whereas when there is

partial information or no information (as in the case of the ground condition of the

enemy installation), the expected probability may be appropriate.

Remarks -- In problems where the probability of survival, or probability of kill,

depends signficantly on certain conditions, which are largely unknown, the only infor-

mation that can be developed is in terms of conditional probability. Such conditional

probabilities may then be used by the targeteer or survivability analyst in conjunction

with available intelligence information.

2.5 Illustrative Examples

2.5.1 Example (Reliability of Long Columns)

In order to illustrate some of the main concepts described and presented above, a

pedagogical example involving the structural safety of long steel columns is considered.

This is a hypothetical example of a problem familiar to all structural engineers,
and is developed expressly for the purpose of illustrating the probability and stat-

istical concepts and procedures described earlier. The assumptions that are necessary

are reasonably realistic; nevertheless, they are made merely for purposes of illustra-

tion.

For reasonably long steel columns, in which failure will most likely be caused

by elastic buckling, the strength of a column may be predicted with the Euler formula,

which gives the critical buckling stress as

2E
fcr - T L(16)

(k • )2
r

in which:

E = modulus of elasticity;

L = column length;

r = radius of gyration about the weak axis of the cross section;

k = effective length coefficient;

k = 1, for columns with hinged-hinged end supports,

k = 1/2, for columns with fixed-fixed end supports.
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Eq. 16 is based on certain idealized assumptions, including the following:

(i) the column is perfectly straight;

(ii) the material is linearly elastic;

(iii) the compressive load is applied axially, i.e. with no eccentricity.

Therefore, imperfections in the use of the Euler formula for predicting the buckling

strength of actual columns can be expected, as one or more of the above idealizations

may be violated in practice.

In the case of structural steel, the modulus of elasticity, E, is fairly uniform.

Its mean-value is generally around 29,000 ksi, with a small coefficient-of-variation.

On this basis, it is reasonable to assume yE = 1.0; hence,

PE = 29,000 ksi

E = 0.03

The variability in the radius of gyration, r, would be the result of the variabilities

in the cross sectional dimensions of the column; again, the associated coefficient of

variation would be small, say 6r = 0.05, and Vr = 1.0.

In the case of E and r, the estimated mean or median values would be fairly

accurate and, therefore, any error in the estimated mean values will be negligible;

thus,

Q E =  aE

and,

r r

The end support conditions of a column directly affect its critical buckling stress;

this is reflected in the factor k of Eq. 16. In an actual column, the end conditions

would generally be between the hinged-hinged (k = 1) and the fixed-fixed (k = 1/2)

conditions. Unless more definite information is available, the uncertainty associated

with the effects of the end conditions for a column may be evaluated by assuming a

simple PDF between the above two extreme end conditions. Furthermore, it is probably

reasonable to assume that, in general, it is more likely for the end conditions to lie

midway between these two extremes. Thus, a symmetric triangular PDF may be prescribed

between the two extreme conditions, as shown in the figure below. On the basis of the

assumptions prescribed above, the mean and coefficient-of-variation of k becomes(see

Yucemen, et al, 1973):
= 0.75

k 0.41 ( 0. 5 = 0.14
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1/2

Alternatively, if it is the judgment that the actual conditions will tend more toward

one extreme or the other, then a nonsymmetric triangular PDF may be more appropriate.
For example, if it is believed that the actual end conditions are closer to the hinged-

hinged supports, then the trangular distribution shown below is appropriate (Yucemen,

et al, 1973)

1/2 k

In such a case, the mean and coefficient-of-variation of k would be;

k = 0.5 + 2/3 x 0.5 = 0.833

-0o.707 (.I-01- ) 0 0.14
0.70 .5 + 2x1

whereas, if the actual end supports are believed to be closer to the fixed-fixed

condition, then the following triangular distribution should be perscribed. In

this case, the corresponding mean and coefficient-of-variation of k would be (Yucemen,

et al, 1973):

= 0.5 + 1/3 x 0.5 = 0.667

-0 707 "20.5 ) = 0.18
2x3.5 +
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Finally, there may be bias and dispersive error in the Euler equation itself. In

particular, the imperfection of the Euler equation may arise from the initial crookedness

of a real column, as well as from any inelasticity of the material; both of which would

violate the idealized conditions on which the Euler equation was based. To evaluate

such bias and dispersive error of the Euler equation, test data that can be used to

evaluate the accuracy of the equation would be required; otherwise, the necessary

evaluations have to be based on engineering judgments.

For example, suppose laboratory test results of axially loaded steel columns with
L

hinged-hinged conditions were found for columns with several - ratios; the measuredr
critical buckling stresses were reported as follows'

L Measured
r f

cr

120 18.0 ksi

120 19.0 ksi

120 21.0 ksi

150 11.0 ksi

150 12.5 ksi

150 11.5 ksi

175 9.0 ksi

175 8.5

These data may then be used to evaluate the inaccuracy (i.e. bias and dispersive

error) of the Euler equation, by comparing the measured fcr to the theoretical fcr (as

given by the Euler equation). For this purpose, we evaluate using the above data as

follows:
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L Measured Mean Theoretical Mean Meas. frf Meas. f f cr
cr cr cr Theo. f

cr

120 18.0

120 19.0 19.33 20.56 0.94

120 21.0

150 11.0

150 12.5 11.67 13.16 0.88

150 11.5

175 9.0 8.75 9.67 0.91

175 8.5

Assuming that the experimental results repre-2nt reality, the ratio of the mean measured

fcr to the theoretical fcr' therefore, is a measure of the accuracy or inaccuracy of

the model (i.e. in this case the Euler equation). In this regard, the mean-value of

this ratio is 0.91 and the corresponding c.o.v. is 0.03. Therefore, there is a bias

in the Euler equation; i.e. it generally over predicts the true buckling stress. Accord-

ing to the above (hypothetical) reported data, the buckling strength of long columns

predicted with the Euler equation should be corrected by the bias factor of 0.91.

Moreover, the error in the Euler equation also has a c.o.v. of 0.03. Hence, in this

case, we have (with reference to Eqs. 13 and 74)

= 0.91g

= 0.03
g

On the basis of the above analyses, the mean-value and coefficient-of-variation

of the buckling strength of long steel columns, therefore, are as follows (assuming a

symmetric triangular PDF for k): By first-order approximation,
2

Jf = 0.91 x 29,000

cr (0.75 )
r

and

f 2 + 4 2 + 4 2 +2
cr E + k r g

/0.032 + 4(0.14)2 + 4(0.05)2 + 0.032

= 0.30

All the above analyses pertain only to the resistance of columns. For the purpose of

evaluating the probability of survival or failure of long steel columns, a similar

analysis would be required also of the applied loading. For the present illustration,
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suppose that an analysis of the loading yields a total c.o.v. in the applied load of

Q S = 0.45, and vs = 1.0 (i.e. no bias in the predicted mean load).

Also, for the present illustration, suppose that steel columns are designed with
the following allowable stresses (i.e. code provision):

f = 15 125 2 for L > 125

all Lrr
Columns proportioned with the above allowable stresses are implicitly designed with an

underlying acceptable failure probability. Prescribing the lognormal distribution for

the buckling strength as well as for the applied load, the failure probability is

determined as follows:

The bias and uncertainty for all 1 ratios are assumed to be the same. Then, ther
failure probability is,

= 1 - (I 6PF=

where, 2 2

6= 2 and C % +4
lf 2  cr

cr

in which: e is the median safety factor, whereas

e is the mean safety factor;

and,

2 = 2n(l

4f2 = tn(l+Qf 2).

cr cr

In designing a column, the required area is determined from,

A> f
- fall

Thus, the mean buckling capacity of the column is

R > A - Pf

cr

Therefore, the mean safety factor underlying columns designed with the above allowable

stress is,
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fcr cr

' A fall all

2__ _

0.91 • (29,00) 2
(0.75 L/r)2

15 (125)2

In this case, the mean safety factor for all L/r is,

0 = 1.98

Hence, the corresponding median safety factor is,

2
1.98 1-0.5 = 2.08

and,

2 =n (1+0.302) = 0.086
cr

-2 n (1+0.452) = 0.184

Thus, the underlying failure probability is;

PF -,n 2.08 )
' ,i'O86+0. 184)

- 1 - :(1.41)

= 1 - 0.921

- 0.079

The above calculation is based on the first-order approximation. The calculated

PF can be improved by using the second-order approximation for the mean column strength;

i.e. using Eq. 15. This would yield the following for the specific value of L/r = i50:
Eq. 15 yields,
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2 2 2 2
f = 0.91 7TE + I 6 v E 2  + 6TrE ]

(k.r L 2L/r)4 "L/r +k 4( L/r)Z "k

0.91 2(29,000) + 3[ iT2(29,000) (0.05x150)2

(0.75x150)
2  (.75) 2(150)

4

+r2(29,00 0
)  (0.14x0.75)

2]

(.75)4(150)2

- 20.58 + 3(0.057 + 0.443)

= 20.58 + 1.50

= 22.08 ksi

For L/r= 150, the allowable stress is

fal = l5(1-) 2 = 10.42 ksi.

The mean safety factor, therefore, becomes

22.08 = 2.12
10.42

and, 52

= 2.12 L - 2.23
1+.302

The improved (2nd-order) failure probability then is

k l n,.23) = l - (1.54) = 1-0.938

= 0.062

2.5.2 Example (Analysis of Test Data)

This next example should serve to illustrate the analysis of available weapons

effect test data; specifically pertaining to the evaluation of the uncertainty in the

prediction of ground motions with range (or scaled range).

Field data for ground motions from nuclear tests have been analyzed and reported

by a number of authors; e.g. Cooper (1973) and Perret and Bass (1975). Such data are

invariably presented graphically in logarithmic plots of free-field ground !lotions with

slant range, or scaled range R/WI/3 ,

Test data are usually reported for earth materials that are classified generically as

alluvium, tuff, and hard rock. The pertinent material properties, such as seismic

velocity and density, may vary significantly within each type of material; however,
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there is not much to be gained by further subdivision of the material than the two or

three generic types commonly used (Cooper, 1973).

It may be pointed out that within each material type, the scatter of the data

represents the uncertainty associated with randomness only. In particular, these data

cannot be used to evaluate the bias and uncertainty due to model imperfections.

All the field data reported by Cooper (1973) and by Perret and Bass (1975) were

measurements from fully contained nuclear burst. In order to use the attenuation

relations derived from contained burst for surface-contact or shallow-buried burst

condition, Cooper (1973) suggested the use of a coupling factor, K; specifically,

K = 0.16 for shallow-buried burst and K = 0.04 for surface-contact burst were recommended.

Data Analysis of Cooper (1973) -- Data from underground tests in granite and other

hard rocks were analyzed by Cooper (1973); particle velocity and displacement data from

contained bursts were presented as shown in Figs. 7 and 8. In Fig. 7 the compressive

stress scale is also shown; this is based on the stress-velocity relation 0KBAR = 'cvFPS'

where , and c are the mass density and compressional wave speed, respectively, for

granite.

The logarithmic mean lines through the data in Figs. 7 and 8 give the following

attenuation equations for stress and ground motions:

KBAR 7 2 / 3 R -2
-MT KFT (17)

200 W2/ 3 R-2  (18)vFPS MT KFT

d 140 w5/6 R-3/2  (19)

IN MT KFT

Also, the lower and upper lines, in Figs. 7 and 8, bounding the data are given as

follows:

3.5 W2/ 3 R-2  < < 14 W2/3 R-2  (20)
MT KFT - 'KBAR - MT KFT

100W 2/3 R-2  < V < 400 W2/3 R 2  (21)
MT KFT MTFPS - KFT

W5/6  K3/2  < 280 W5/6 R-3/ 2  (22)7-MT -KFT - dIN MT KFT

The results obtained from Eqs. 17 through 19 are the median stress, velocity, and

displacement. From Eqs. 20 through 22, the coefficients-of-variation associated with

the data scatter may be evaluated. For example, for the particle velocity, assuming

that the bounding lines correspond to the 90% confidence bounds, the standard deviation

of the natural logarithm of the particle velocity is
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=n 400 - zn 100
v 2 x 1.65 0.42

Thus, the c.o.v. of v is (see Sect. 2.3.3),

6v =e42 2 -I 0.44

Whereas, for displacement, the standard deviation of 2nd is

zn 280 - zn 70 .42
-d 2 x 1.65

and the corresponding c.o.v. is also

6d = 0.44

The c.o.v. of the stress, of course, is the same as that of the particle velocity.

Data Analysis of Perret and Bass (1975) -- Nuclear test data were analyzed also by

Perret and Bass (1975). Statistical and regression analysis of the available data were

performed; results were presented in logarithmic plots of peak motions with scaled

range, as shown in Figs. 9 and 10. Aside from presenting the logarithmic mean (i.e.

median) ground motions, values of the "variance factors" representing the degree of

scatter of the data about the regression equations were also presented.

The regression equations giving the median ground motions were given in the follow-

ing form:

x = C(KW)a R-b (23)

in which x is the acceleration, velocity, or displacement; a, b and C are coefficients;

W is the weapon yield in kiloton; K is the coupling factor; and R is the range in

meters. Specific values of the coefficients C, a and b are given as shown in Table 1

below, for each type of material, as well as the appropriate range of applicability.

In addition, the variance factor in each case are also given.

As defined by Perret and Bass, the variance factor is the exponential of the

standard deviation of znC. Hence, its natural logarithm yields the parameter t;

i.e.

= n(variance factor)

On the basis of Eq. 23 and the coefficients given in Table 1 the equation for

determining the pertinent median ground motion as a function of the slant range is

obtained. For example, in wet tuff, the median particle velocity is given by

u 6.61 x 103 (KW)0 .52 R- .56
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Table 1: Coefficients for Eq. 23 (after Perret and Bass, 1975)~Applicable

Appicale1/3 Variance
Motion Material C a b range,m/kt aFactor

a-W1/ 3  Alluvium 2.24x10 l 1.93 5.78 20 - 39 6.39

1/3 4a-W /  4.79x04 0.71 2.13 60 -350 2.34

u 1.52xi0 6  1.09 3.27 30 -150 1.96

u 3.86xl0 1  0.39 1.16 100 -350 2.09

d/W1/ 3  3.44xi0 6  1.01 3.04 40 -150 2.42

d/W11 3  2.22x10 2  0.37 1.11 100 -350 1.72

a'W1/ 3  Dry Tuff 4.90xi0 10 1.59 4.77 40 -150 4.33

a.W11 3  7.71x10 4  0.64 1.92 100 -500 2.12

u 1.85x104 0.66 1.98 40 -500 1.31

d/W 1/ 3  3.30x105 0.73 2.20 100 -500 3.11

a.WI/ 3  Wet Tuff 4.31xi0 7  0.-7 2.62 30 -600 2.21

U 6.61xi03 0.52 1.56 30 -600 1.56

d/W /  4.90x106  0.38 2.63 50 -600 2.63

a-W1/3  Hard Rock 9.29x106 0.77 2.32 90-2200 1.56

u l.8x10 4  0.57 1.72 40-2200 1.39

d/W1/3  8.72x10 0.63 1.83 70-2200 2.08

whereas, the corresponding equation for acceleration would be,

a.W1/ 3 = 4.31 x 10
7 (KW)0 .8

7 R 2 .62

Also, on the basis of the variance factors given in Table 1, the coefficient-of

variation representing the uncertainty due to randomness in the measured data for wet

tuff may be obtained as follows;

In wet tuff, the variance factor for particle velocity u is 1.56

Therefore,

C ;n 1.56 0.445
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Pence, the c.o.v. is

C 1eA45 -1  0.468

It may be emphasized that the test data described above can be used only to evaluate

the uncertainty due to randomness; i.e. the scatter in the measured data respresents or

is caused by factors that are inherently random, including the natural heterogeneity of

the soil and rock deposits. These data, however, do not provide a basis for evaluating

the presence of systematic bias or dispersive errors in the models (in this case, the

attenuation equations). In the present case, the bias refers to any tendency of the

regression equations to over- or under-estimate the median ground motions; whereas the

statistical uncertainty refers to the conceivable dispersion of the predicted median

ground motion. The imperfections of the model would include the effects of factors that

were not explicitly reflected in the field data, or in the attenuation equations. For

these reasons, those factors that were not included in the experimental setup of the

weapons tests should be identified. The effects of such factors on the ground motions,

therefore, will contribute to the systematic and dispersive imperfections of the attenua-

tion equations; these effects, however, may have to be evaluated largely on the basis

of subjective judgments. The pertinent factors and their potential effects on ground

motions should be carefully examined and assessed. Such examination and evaluation

would require expertise in nuclear weapons effects, and ought to be performed by or with

the cooperation of such experts. In this regard, the bases for all uncertainty measures

should be explicitly documented and explained; where judgments are required, their bases

should also be described. It is important that the measures of uncertainty used in a

probabilistic analysis be credible. Credibility, however, is not enhanced when numbers

(representing uncertainty measures) are simply given without apparent explanation or

justification. Even though prediction errors may often have to be assessed subject-

ively through engineering judgment, they should be carefully and systematically analyzed

and quantified; in particular, the basis for any judgment ought to be explained and

carefully documented. Otherwise, it may appear to be arbitrary.
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III. IMPLEMENTATION IN SURVIVABILITY/VULNERABILITY
ANALYSIS AND DESIGN

3.1 Introductory Remarks

In implementing probability for strategic purposes, it is important to recognize that

probability is necessary only to the extent that it is a quantitative measure of sur-

vivability or vulnerability. It cannot be overemphasized that, because of uncertainty,

absolute survivability or vulnerability is not realistically possible; it may be assured

only in terms of probability. However, the implementation of probability for this purpose

does not necessarily mean that probabilistic analysis must be performed in all phases of

evaluation and design; indeed, it is needed only as a tool for the analysis of uncer-

tainty and its effect on survival probability. In many cases, those phases of

engineering analysis that require probabilistic or statistical methods can be isolated

and processed once, in such a form that the remaining steps in the actual design for

survivability, or target planning for kill potential, can be carried out in conventional

(deterministic) terms.

In other words, the implementation of probability in survivability and vulnerability

problems should not necessarily change the conventional (usually deterministic) procedure.

The use of probabilistic methodologies can be limited to the development of certain

generic relationships that are necessary as a consequence of unavoidable uncertainties.

In this sense, the real role of-probability in engineering is that of supplementing

existing deterministic methods of analysis and design; recognition of this role can

serve to facilitate the effective and sensible implementation of probabilistic concepts

and methods. In other words, probability and probabilistic methods are most effective

if used to supplement that which is lacking in purely deterministic approaches, which

is to provide quantitative means for uncertainty assessment and analysis of its effects

on the assurance (or degree of assurance) of survivability and weapon effectiveness.

Implementation should take into account in particular the following:

(i) the objective of a probabilistic analysis;

(ii) the state and quality of available information;

(iii) the level of accuracy of a calculational method that is commensurate

with the quality of available information.

If the purpose of a calculated probability is to estimate or assess the true

probability of survival of a given system, the required probability may be limited to

the consequence of the uncertainty due to randomness; this may be accompanied by an

error bound on the estimate representing the uncertainty due to prediction errors.

However, if the objective is to develop a design or to develop relationships useful for

formulating designs, then the consequences of all sources of uncertainty, regardless of

whether they are due to randomness or arising from prediction error, should be reflected

in the calculated probability of survival; in this latter case, the two types of un-

certainty, therefore, may be combined and analyzed together.
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That is, if the objective is the evaluation of the probability of survival of a

given structure or facility to a specified enemy attack, the probability of survival

may be expressed in terms of an interval estimate of the true survival probability; any

value within this interval represents the effect of randomness, whereas the range of
the interval represents the effects of uncertainty associated with prediction errors.

On the otherhand, if the objective is the formulation of a design to withstand

an enemy attack with a desired survival probability, then the effects of all sources

of uncertainty must be included. For this purpose, the total uncertainty irrespective

of whether it is due to randomness or arises from prediction error, is pertinent.

The emphasis in the present report is on the application of probability concepts

for the formulation of structural design for survivability. Accordingly, the emphasis

is principally limited to the elucidation of the expected probability approach. For

purposes of design or decision making, a calculated probability of survival or kill

should preferably be unambiguous. Ambiguity can be avoided by using the expected

probability approach, as this gives a point estimate of the probability of survival.

On the otherhand, an interval estimate of the probability of survival would be

ambiguous as there is no single value representing the true probability of survival.

3.2 Review of Basic Approaches

3.2.1 The Expected Probability Approach

In Eq. 4 or 5, if the c.o.v. Q, or standard deviation a, includes all the disper-

sive uncertainties in R and S, the resulting probability of failure or survival is

effectively a "total probability," or expected probability, in the sense that the

consequences of all sources of uncertainty (associated with randomness as well as with

errors of prediction) are reflected in the calculated probability. That is, in this

case, the mean (or median) value of the resistance is

'R = 'R r

whereas the coefficient-of-variation of the resistance is (based on first-order approxima-

tion)
2 2+A2

R R +R

Of course, if there is no bias in the prediction model, 1R = 1.0 and *R = r

Similarly, the corresponding mean (or median) and coefficient-of-variation of the

applied weapon effect are

Is= 'S

and,

+AS

where;

vR' VS - the mean bias factors in r and s;
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R' 'S c.o.v. representing the uncertainties due to randomness;

A R, A = c.o.v. representing the dispersive errors in the predicted

mean-values r and s.

Observe that any bias in the calculated r and s are corrected with the deterministic

bias factors vR and vS; such biases, therefore, are implicitly reflected in the cal-

culated probability of Eq. 4 or 5.

The resistance R and weapon effect S are often functions of the respective variables;

that is,

R = gl(RI'R 2 ... Rn) (24)

and,

S = g2 (SI,S 2 .... S ) (25)

In these cases, the total uncertainty in each variable, Ri or S., may be evaluated
2 21

individually; e.g. '
. 6. + A. , and then the total uncertainty in R and S determined1 1_ 1 '

through Eq. 14. This assumes that the uncertainties due to randomness and prediction

errors between variables are statistically independent or uncorrelated. However, if

the randomness between two variables, e.g. Ri and R., are statistically independent,

whereas the corresponding model imperfections are correlated (or vice versa), then the

total uncertainty in R has to be evaluated separately first in terms of 6R and AR '

That is, if the randomness in the R, s are statistically independent, whereas the

corresponding prediction errors are correlated, then the total randomness in R would

be

62 1 n 2 2 (26)R - 2 i c i (6R i4 i=l 11

whereas,
2  2 + n n (AR )(A (27)

R g + 2  . c R c OR i ) R.OR.
R i=l j=l

in which:

91 = c.o.v. representing the dispersive error in the model

function g,(...);

c = evaluated at r . ... r

c. R. 15 at i.9n.1

From which the total uncertainty in R, therefore, is obtained as,

2R 2
"R R +AR

The total uncertainty in S may be similarly obtained.
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in order to relate the total probability concept described above to the notion

L). conditional survival or failure probability (described subsequently below), the

implications of the above total probability may be explained also as follows.
In Fig. lla is shown the probability density function of R and S, representing

only the randomness in R and S, with estimated mean-values r and s, and respective
c.o.v. 3 R and 6S. Because of uncertainties in the estimated mean-values, r and s,

these may also be described as random variables R and S with corresponding PDF fk(r)

and f-,(s), respectively, as shown in Fig. llb with respective c.o.v. AR and AS -

Therefore, for specified values of r and s, as shown in Fig. lla, the failure or

survival probability associated with f (r) and f-(s) is conditional on the given values
ofr n s hnea acuatd R Sof _ and s; hence, a calculated probability is a conditional probability, or

F P(R < SIR r, Ss) (28)

In light of the distributions for R and S, as shown in Fig. llb, the probability that

the mean-value S = s is only ft(s) ds; similarly the probability of R = r is f-(r) dr.
In effect, we have two sets of probability distributions; one representing the

randomness in R and S, whereas the other representing the errors in the predicted mean

(or median) values. The probability of failure, or survival, may include all possible
values of _R and 'S; the result is the total or expected probability,

PF= P(R < S 1 rs) " P(R = T, _S= s)
all r,s

f [ f F1 ,.,(s).f 1 ,(s) ds jJf-().f-(_s) dr ds (29)0 0 0

Eq. 29 is actually equivalent to Eq. 1 or 4 with total uncertainties ;-R and

It may be observed that Eq. 29 is merely an application of the total probability concept

described earlier in Sect. 2.4; this is appropriate when there is imperfect information

as in the present case of the estimated mean-values r and s.

3.2.2 The Conditional Probability Approach

Alternatively, the calculated probability of survival may represent only the effects

of uncertainty associated with inherent randomness. However, such a probability depends

on the parameters (specifically the mean or median values) of the underlying distribution.

Because these parameters are subject to errors (i.e. prediction errors), the resulting

probability of survival or failure also contains uncertainty, which may be represented

by an interval or error bound on which the correct probability may lie. In this regard,

it may be emphasized that the information normally available to assess the error bound

on the calculated probdbility is often based largely or entirely on subjcctive judgments.

For this reason, theoretical exactness in the determination of this error bound is

seldom justified, for the reason that the available ,,asis for its determination does

not warrant exactness or accuracy, especially if such accuracy requires added complexity.

51



tf (a)

_ _ __)

_ _ _ _ _ _ _ _A

FIG.11 PF O R AD S (b) DF F R ND

I 52



Probability may be implemented also in a conditional sense; that is, because of

unce'tainty due to prediction errors, a calculated probability representing the effects

of randomness only is conditional on the values of the parameters (e.g. r and s) used

in the calculation. In other words, pS or PF may represent only the consequence of

uncertainty due to randomness, whereas in order to "cover" the uncertainty associated

with prediction errors, conservative values of r and s may be specified. In this case,

the resulting probability, therefore, is associated only with the probability density

function (PDF) fR(r) and f (s) conditional on conservative mean-values 7 and ,u The

degree of conservatism may be designated by the cumulative probabilities associated

with Su and F . In this approach, the probability of survival, therefore, is a

conditional probability based on the probability distributions of S and R depicted

in Fig. 12; i.e.

PS - 1 -0 FR1-(s)
'f51 

-
u (s) ds (30)

fA (r)
I R~i

A A

FIG. 12 PDF OF R AND S WITH SPECIFIED -r AND su

Remarks -- The conditional probability approach may be particularly appropriate

when the mean or median values are largely unknown or contain very large uncertainty.

In such cases, probabilities can be given conditionally on assumed values of the means

or medians. However, if credible distributions for the mean or median values can be

established, then the most realistic (rather than conservative) estimate of the true

probability is the expected probability as given in Eq. 29.
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3.2.3 Remarks on Deterministic Procedure

Much of engineering analysis and design, including applications in strategic

problems, will remain largely deterministic. Probabilistic analysis, of course, is

needed to properly assess and analyze the effects of uncertainties on the survival or

failure of a given system. However, once such uncertainties have been assessed and

their effects on survivability have been evaluated, the results may then be used in a

purely deterministic format. After all, a structure or system may always be designed

conservatively such that there is adequate resistance relative to a given weapon effect;

it is in determining what constitutes adequate conservatism that probability concepts

are important. Consequently, it is not surprising that the key role of probability is

supplemental to existing deterministic methods, in the sense of providing a proper

framework for the analysis and evaluation of uncertainties and of its effect on surviv-

ability.

Again, it may be emphasized (see Figs. 2 and 3), that the probability of failure

(or survival) is a function of the central factor of safety. The central factor of

safety, which is the ratio of r/s or r/s is a deterministic quantity; hence, once the

degree of uncertainty and its effects have been evaluated, the main problem in the

evaluation of survivability becomes a purely deterministic problem, or a problem that

requires purely deterministic analysis for determining the mean (or median) values.

The premise of the present report, therefore, is that even though probabilistic

concepts and methods are essential for engineering evaluation and design, the implementa-

tion of such concepts can be most effective if they are used to supplement or complement

existing deterministic approaches to engineering. For this purpose, certain basic and

generic relationships, however, must be developed. The approximate probabilistic analysis

summarized herein should permit the development of the required relationships. Specific-

ally, it is shown that for a given type of structure or system, whose level of uncertainty

has been assessed, the probability of survival is a function of the central safety

factor (ratio of medians or ratio of means). Conversely, design to achieve a desired

probability of survival can be accomplished by using the appropriate central factor

of safety. These relationships are subsequently developed below.

3.3 Generic Relationships

Once again, it may be emphasized that the probability of survival (or failure)

depends on a few parameters characterizing the resistance and weapon effect. Specifically,

it is a function of the relative positions of the resistance PDF, f R(r), and the PDF of

the weapon effect, fs(s), and of the respective uncertainty measures R and S"

In Eq. 4 for lognormal distribution, or Eq. 5 for normal distribution, it is shown

explicitly that the survival probability PS is a function of the central safety factor,

or T, and the degree of uncertainty, c or ; hence, in evaluating the probability of

survival, or failure, the main task involves the determination of o or ,

once or " has been evaluated. The determination of o or r , of course, requires only
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deterministic analysis since it involves the calculation of the median or mean values.

The determination of the probability of kill is similar to that of the probability

of survival. As in the case of the probability of survival which is a function of the

central safety factor, the probability of kill is also a function of a similar factor

which may be called "the overkill factor", that represents the relative positions

between the PDF of the weapon effect and the PDF of the resistance. Therefore, just as

the survival probability involves the evaluation of the central safety factor, the

probability of kill requires the evaluation of the central overkill factor.

Design Relationships -- Design, in the context used herein, means the determination

of the required resistance in order to achieve a specified level of survivability.

Specifically, this involves the determination of the required resistance in order to

achieve an acceptable or specified survival probability pS. Again, this design can be

determined through the application of an appropriate central factor of safety as follows:

Required median resistance, to resist an applied median weapon effect s, is

r~osr = o s

in which the appropriate safety factor is such that it corresponds to a specified

probability of survival pS. This probability-based safety factor can be obtained from

inversion of Eq. 4, obtaining

o=e

where;

D (pS), the value of the standard normal variate at

cumulative probability PS, and

R S

Similarly, in designing a weapon system to achieve a desired probability of kill

PK the required median weapon effect can be obtained by using the appropriate median

overkill factor 0K, obtaining

s = eK r

where, r is the estimated median resistance of the enemy target. The required median

overkill factor is determined from

°K eBC

where, in this case,

(PK)
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The relationships referred to above are developed more explicitly below for the

case involving lognormal distributions.

3.3.1 Evaluation of Expected Probability of Survival or Kill*

The basic relationships and procedures needed for survivability evaluation as

well as survivability design are summarized below for lognormal distributions. The

lognormal distributions are used here for purposes of illustration; in an actual problem,

these distributions may or may not be the most appropriate. If not, relationships

that are similar to those illustrated here for the lognormal distributions may also be

developed. The main steps in the evaluation of survival or kill probability may be

outlined as follows:

Step 1 -- Determine median resistance r, and median weapon effect s; and evaluate the

available safety factor.

s r/s

or overkill factor,

6K = s/r.

Step 2 -- Evaluate uncertainties in R and S in terms of c.o.v. QR and PS'
and obtain

R2

and,

Step 3 -- Calculate probability of survival,

zn a
= (4)PS

or probability of kill,

Qn o,

) (4a)

The relationship between the survival (or kill) probability and the required

safety (or overkill) factor may be portrayed graphically on the lognormal probability

paper as shown earlier in Fig. 4 for various values of t.

In other words, to evaluate the survival probability for a given structure or

facility under a stipulated enemy attack, we evaluate the environment expected from the

enemy weapon (i.e. s and QS); also, for a given structure or facility we determine the

*Any reference here to targeting is presented only to show the similarity between the

problems of target analysis and survivability evaluation.
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median resistance r and associated uncertainty 2R" From these the central safety factor

is obtained, and the survival probability pS is calculated through Eq. 4 or read from

Fig. 4 with the appropriate value of c.
Similarly, in the case of evaluating the kill probability, we estimate the resistance

r and QR of the enemy installation, utilizing intelligence information when it is avail-

able; also, we evaluate the median weapon effect s and associated uncertainty 2S from

the weapon system to be employed for the attack. On this basis, the median overkill

factor is determined as 6k = s/r. The probability of kill is determined either with

Eq. 4a or from Fig. 4 corresponding to the given .

3.3.2 Steps in Design to Achieve Specified Survivability or Kill Potential

In the case of design to insure survivability, the objective is to design

a defense system in order to achieve a desired probability of survival pS against a

stipulated enemy weapon threat, whereas from an offensive standpoint it is to plan a

targeting strategy in order to achieve a desired probability of kill PK" (Any reference

here to targeting is simply to show the similarity in the problem with that of surviv-

ability design).

In these cases, the desired pS or PK would be specified, and the uncertainty

associated with R and S would be evaluated. Eq. 4 is then used to determine the

required median safety factor OS, or median overkill factor eK2 as the case may be.

Purely deterministic analysis is then used to determine the median resistance r = 06s

required to insure defense survival with probability pS, or the required weapon system

to deliver s = aK r in order to insure kill with probability PK"

The specific steps in the design process, therefore, may be outlined as follows:

Step 1 -- Specify or prescribe the desired survival probability PS, or kill

probability ,K' as the case may be.

Step 2 -- Determine the median safety factor eS, or median overkill factor eK,

necessary to achieve pS or PK; i.e.

S = e

where, = ps )

Similarly,

eK =e

where,

(PK)

Step 3 -- The required median resistance r is

r = sS
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whereas, the required median weapon effect is,

s = 0Kr

The processes of survivability (or kill) evaluation and survivability design• (or
target planning) are summarized in Table 2. Also, in Table 2, the places where

statistical analyses are required are indicated; the remaining steps, therefore, involve

purely deterministic analysis.

TABLE 2: Outline of Survivability Evaluation and Design

Eval ua t ion Desiqn

Objective: Evaluate PS for given Objective: Deterwine r to achieve

S; or PK for given R PS' or s to achieve PK'

Deterministic Find r:
Analysis: Find - Specify PS or PK

Find s: s

Evaluate ::R, S or Evaluate .R' S

R, S and or rR ' S

r = ,< + S

~R + S

Probabilistic/ Probabilistic/
Statistical Statistical
Analysis Analysis

Calculate pS [Determine required

or PK' S or 6K

Calculate required

6 , or Deterministic

6K r AnalystsSK
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3.4 Survivability and Design of Underground Tunnels

The survivability and design of underground tunnels to ground-transmitted pressures

from a nuclear burst will illustrate the implementation of the basic probability prin-

ciples in the evaluation and design of a nontrivial strategic structural problem. This

application should also serve to illustrate and emphasize, in particular, how probability

methods may be used in conjunction with necessary deterministic analysis. The same problem

was recently discussed in a report by Boeing (1977); therefore, liberal references to

this report will be made for some of the relationships used herein pertaining to under-

ground tunnels.

The survivability or vulnerability of underground tunnels to nuclear weapon effect

is generally considered in terms of its resistance to uniform hydrostatic pressures. Such

pressures are invariably determined or derived through available information for particle

velocities at the same depth; pertinent equations for particle velocities, developed

empirically from nuclear test data, were discussed and described in an earlier example

in Sect. 2.5.2. The compressive pressure P is then determined by

P = Pcu (31)

where: u = particle velocity,

c = wave propagation speed,

= mass density of the material.

The free-field particle velocity may be given by an equation of the

following form:

u = C(KW)a R b , (in m/sec) (32)

in which;

R = the slant range, in meters;

W = weapon yield, in kilotons;

K = energy coupling factor;

C = coefficient determined from linear regression;

a, b = exponents determined from linear regression.

The resistance P of a lined or unlined tunnel to free-field pressure0

loads may be estimated with the Newmark equation as follows (Boeing, 1977):
K+ Ks-l2

sr K +1 (33)
sr S sr Y.srK _

o 2(K sr-) i ri ri sr
sr9
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where :
rEr r(1-2vcwS hr e: E .- c if failure occurs in the rock;rS (I-2) (l-r c

E (- r 2 (-2 )S (1- a I cc)-
r E r Ja

+i .. . . . .' c 2 c 1 r( l 2 ) (,"c r c

+ rc(-2vc) - (1-2v)- ; if failure occurs in the liner,

(1-V C) (l-V r)

and, Yr +ur (Ks-1)r r sr rc

in which:

r radial stress at the concrete/steel interface;

h .f
r a

-rc radial stress at the rock/concrete interface;

f(K -1) r Kcl
sc a

- qc-T)-' c Ksc- ra rac

0ur = unconfined compressive strength of rock (psi);

f = yield stress of steel liner (psi);Y

f = unconfined compressive strength of concrete (psi);

c circumferential strain at concrete/steel interface for

liner failure;

r n circumferential strain at rock/concrete interface 
for

rock failure;

Er  = equivalent elastic modulus of rock (psi);

E - equivalent elastic modulus of concrete (psi);

Ksr = friction-dependent constant for rock;

K = friction-dependent constant for concrete;sc

r = Poisson's ratio for rock;
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c = Poisson's ratio for concrete;

rco = radius to rock/concrete interface (in);

r = radius to concrete/steel interface (in);

h = thickness of steel liner (in).s

Derministic Analysis -- The deterministic part of the evaluation involves the

determination of the median safety factor as follows:

For the purpose of numerical illustration, consider an underground tunnel as shown

in Fig. 13 with an inside radius of 84", lined with a 12" concrete and 1.25" steel liner

(see Boeing, 1977).

The specific material parameters and tunnel dimensions are as follows (Boeing, 1977):

Parameter Mean Value c.o.v.

Gur 4,000 psi 0.48

f 52,400 psi 0.06Y

fc 7,030 psi 0.056

c

C 0.04 0.81

E c 5.5 xlO 6 psi 0.036

Er 6.53 x 105 psi 0.26

K sc 4.1 0.34

K sr 1.22 0.17

V 0.30 0

V 0.39 0

r

ra 84 in. 0
r
r 96 in. 0

h 1.25 in. 0
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Fig. 13 Deep-buried Tunnel Configurations--
After Boeing (1977)
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With the above parameters the median resisting pressures of the tunnel, obtained with

the Newmark equation, can be summarized as follows:

Median Resisting Pressure P0 of Tunnel

_ Material
Failure Mode Tuff Hard Rock

Liner 7,790 psi 79,300 psi

Rock 10,450 psi 101,100 psi

These resisting pressures are indpendent of the depth of burial D.

Based on the particle velocity of Perret and Bass (1975) for wet tuff, the

equation for the median applied pressure is given by Boeing (1977):

= 5.6 x 106 (KW)052 R-

whereas in hard rock the corresponding equation is (Boeing 1977):

= 34.1 x 10 (KW)05733 R-72

The slant range R is,

R= v' D2 + L
2

in which L is the miss distance, whose median is the CEP; i.e. L = CEP. Denoting

C the median range for a given depth D is-D'

R= / 2 + L
2 = D v'l + 2

Consider a surface burst with a yield of W = 5 megatons = 5,000 kilotons, and a

weapon accuracy of CEP = 500 meters.

If the tunnel is at a depth of 1000 meter in wet tuff

= 0.5

and,

R= 1000 /I + 0.52 = 1118 m

According to Cooper (1973), the coupling factor K for surface contact burst is 0.04,
whereas for shallow buried burst K = 0.16. For a nominally surface burst, the appropriate

value of K may be assumed to range between these two limits, although it is more likely

to be closer to 0.04. On the basis of these assumptions, a left triangular distribution

may be assumed for K, as shown below.
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The mean-value of K, therefore, is

= 0.04 + - (.12) 0.08

Hence, the median pressure is,

P = 5.6 x 106 (.08 x 5,000)052 (1118)- 156

= 2217 psi

At the depth of 1000 m, the median safety factor for the tunnel, therefore, is

7790
-- 7 

=  3.51

Thus far, the analysis is entirely deterministic.

Probabilistic/Statistical Analysis -- The probabilistic/statistical part of the

evaluation involves the determination of the pertinent uncertainty measures, which are

as follows:

Using the partial derivatives of the Newmark equation derived by Boeing (1977),

the contributions of the various variables to the total uncertainty in P0 were obtained

for wet tuff and hard rock as follows:

Contributions to p2 (Liner Failure Mode)
0

Material
Variable Wet Tuff Hard Rock

0.1570 0.0914ur

'ra 0 0

0.0130 0.0491rc
Lc 0.3013 0.2790

K 0.1186 0.0633sr

E 0.0903 0.0901r
Total : 0.342 0.349
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Contributions to 2o (Rock Failure Mode)

Material____
Variable Wet Tuff Hard Rock

ur 0.0965 0.2145

0 0

r 0.2706 0.1715

E 0.0866 0.0719r

Ksr 0.1488 0.1109

Total 0.305 0.335

On the basis of the above results, the total uncertainty in the estimated resisting

pressure P0 of the tunnel in wet tuff is p = 0.342 = 0.58.
0

The Newmark equation was developed in terms of the resistance to free-field pressure

and, therefore, is based on the assumption of purely hydrostatic pressure loading. This

may be reasonable if the advancing shock wave is rapid enough to engulf the tunnel before

there is any appreciable distortion of the tunnel. In such cases, it may be reasonable

to assume that there is no bias in the Newmark equation and that the total dispersive

uncertainty is p = 0.58. Then,
0

Po = / ;,n(l + , 2p = hn(l + .582

00

= 0.54

In the case of the applied pressure, according to Perret and Bass (1975), the

variabilities in the exponents a and b of Eq. 32 are small compared to those in the

coefficient C and coupling factor K; thus, the uncertainties in a and b may be neglected.

On this basis, the total uncertainty in P is,

Q 2 + (a RK) 2 + (b R)

In the following, it will be assumed that there is no model bias or additional dispersive

uncertainty in the pressure equation, Eq. 32, as developed by Perret and Bass (1975).

Also, using the variance factors evaluated by Perret and Bass (1975) as described earlier

in Sect. 2.5.2, which gave a variance factor of 1.56 for wet tuff, we obtain

C = )n 1.56 = 0.445

and,

C e( .445) _ 04

= ~ - = 0.47
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In an actual burst, it is difficult to anticipate the burst condition and, therefore,

significant uncertainty in the coupling factor K can be expected. As indicated earlier,

the burst condition may be assumed to range betwen the surface contact and shallow

buried conditions; on this basis, and the left triangular distribution assumed above,

the c.o.v. associated with K may be evaluated as

0 .707(L'16 - 0.04

K 0 .16 + 2 x04 0.35

The slant range R is a function of the miss distance L, and the depth of burial D

of the tunnel. In evaluating the survivability or vulnerability of a defensive system,

the depth D is, of course, known; therefore, there is no uncertainty. The miss distance

L of an enemy weapon burst, however, will have variability. This will depend on the

accuracy of the weapon, specified in terms of its CEP. On this basis, the c.o.v. of

the slant range R is evaluated as follows:
Agai, dnotig o CEP

Again, denoting p = C, and recognizing that in the case of the miss distance,

its median L = CEP, the median range becomes

Also, the variance of R is, by first-order approximation

-2 2 +2 2
2 2D

S([2 + 2)

Replacing L for L (i.e. using the median L in place of the mean L in the above equation),'I the variance of R becomes

2 1 2 p2 2'R 1+'2 (D L

But, ;0 = 0; hence, the standard deviation of R is

CR -+(2 L

from which, the c.o.v. of R is

R 2 L"R 2

but, L= 0.849 CEP; hence,

0.849 CEP 0.849 2

R D +C2 = 2.8
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At the depth of D= 1,000 meters, and with the indicated CEP : 500 meters,.,, 0.5;
52

hence s2 = 0.849 - ) = 0.17
R ~ 1+.52

Therefore, using a = 0.52 and b = 1.56 in Eq. 34, the total c.o.v. in the calculated
applied pressure at depth D = 1,000 meters is

/0.472 + (0.52x0.35)2 + (1.56x0.17) 2  0.57
-P

and,

Lp= Vzn(l + 0.572) 0.53

Hence,

=/ p2 + C2 = /0.542 + 0.53 = 0.76

o
0

and the survival probability of the tunnel in wet tuff, therefore, is

PS ,n 3.51 (1.65
0.76 = (6)

= 0.950

or PF = 0.050.

Following the procedure illustrated above, the survival probabilities for other

depths of the same tunnel, subjected to the same weapon yield of W = 5MT and CEP = 500 m,

were also evaluated; the results of these calculations are summarized below.

Sumary of Survivability Calculations (w 
= 
5 MI)

Deterministic Analysis Probabilistic/Statistical Analyses

__ _Y__ ___pJ_ __ P t ..... _

100 5.0 7544 7790 1.03 0.82 1.37 0.58 1.03 1.16 0.512

200 2.5 6928 1.12 0.73 1.25 * 0.97 1.11 0.540

500 1.0 4530 " 1.72 0.42 0.83 " 0.72 0.90 0.726

1000 0.5 2217 3.51 0.17 0.57 - 0.53 0.76 0.950

1500 0.333 1291 - 6.03 0.08 0.52 1 0.49 0.73 0.993

2000 0.2s 853 * 9.13 0.05 0.51 . 0.48 0.72 0.999

3000 0.167 465 16.75 0.02 0.50 " 0.47 0.72 0.999

67



-Novo

In the above table, the calculations involving purely deterministic analyses are

distinguished from those that require probabilistic/statistical analyses. Observe also

that for a given CEP, the probabilistic/statistical part of the evaluations will remain

unchanged; only the deterministic part of the evaluations will be altered. For example,

to obtain similar results for other weapon yields of the same tunnel will require the

calculation of the median pressures P, and evaluation of the corresponding safety

factors 0. The results for other weapon yields may be summarized as follows:

SDe'tn , - Pressure, P. for Yield W for Yield 4
_ ____. _ 5. 5, 1 O l5T 2,T 2 / 3

. 5 i,~, - 13,3E4 15,511 17,43 24,370 0.7 2.i. 3.50 C .31

30 2.5 9,934 12,265 14,245 16,000 22.540 0.78 C.64 3.55 0.19 C.34

570 1.0 6,4r. 3.- 9,314 10,46n 14,G19 1.20 0.47 0. ,4 3. 7 0.52

"2 0.5 3,1173 3,.Z 4, 5,1 7 ,34 2.43 lb 1.71

C.33 I,-31 2,2s6 2, % 2,91 4,Z,5 4.2) 3.41 2.93 2.61 1.32

23-5 0.-5 1,224 1.511 1.755 1,071 2.8-6 6.36 5.16 4.44 3.91 2.7C

> 3 C.i67 667 324 956 1,74 1,540 11.68 9.45 8.15 7.25 5. 6

The resulting survival probabilities, therefore, would be as follows:

Depth, m PS for Yield W

5MT IOMT 15MT 20MT 25MT 5OMT

100 0.512 0.390 0.320 0.274 0.245 0.156

200 0.540 0.413 0.345 0.295 0.261 0.166

500 0.726 0.579 0.488 0.425 0.371 0.233

1000 0.950 0.881 0.818 0.761 0.709 0.532

1500 0.993 0.976 0.954 0.929 0.905 0.794

2000 0.999 0.995 0.989 0.981 0.972 0.921

3000 > 0.9999 0.9997 0.999 0.998 0.997 0.988

The above results can be portrayed graphically (see Fig. 14) to show the relation

between the survival probability and depth of burial D of this particular tunnel in wet

tuff.

On the basis of the above results, the depth D required to insure a given survival

probability pS against various weapon yield W may be developed. For example, from Fig.
14, in order to insure a 90% survivabilit), the required depths D of the tunnel for

given W are approximately as follows:
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W, MT Required Depth, D

CEP = 500m PS = 90% PS : 50%

5 820 m 80 m

10 1050 m 360 m

15 1200 m 520 m

20 1350 m 610 m

25 1480 m 690 m

50 1860 m 960 m

The required required depths to achieve 50% survival probability are also given above.

These relations are also shown graphically in Fig. 15.

Survivability Design -- If the appropriate curves, such as Figs. 14 and 15 are

available, the required depth of burial may be obtained directly from such curves to

insure a specified probability of survival. The required tunnel depth, of course, may

also be determined directly to satisfy a prescribed survival probability; we illustrate

this as an example of the problem of design for survivability.

For the same tunnel in wet tuff, suppose that the threat is a penetrating weapon

of W = 1OMT with CEP = 200 m. A shallow-buried burst condition is appropriate; assume

a mean coupling factor K = 0.16, and a c.o.v. QK = 0.35.

In this case, since D is unknown, p is also unknown. So a trial-and-error procedure

is necessary.

Suppose the prescribed survival probability is pS = 0.90. The trial-and-error

procedure may proceed as follows:

Assume a trial depth D = 1000 m.

Thus, = 0.20

Then,
R= 0.849 (0"--22-- 0.03

1+0.22

and,

IQ = / 0.472 + (0.52x0.35) 2 + (1.56x0.03)
2

= 0.51

From which, p = 0.48.

The uncertainty in P remains = 0.58 and rp 0.54. Hence,
0 

0

= /0.482 + 0.54 = 0.72
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For a 90% survival probability, the required median safety factor, Eq. 6 is

- 1.28x0.72 -2.51

Therefore,

- 7790 - = 2.51

5.6xl06(KW)0.5(D/1+,')1.5

From which the required depth is,

2.5lx5.6x10 6 (K)0.52 1.56

D= 7790 (1+p 2)0.78

= 1400 m.

In the next trial, assume 0 = 1400 m.

= 200 -01

1400 =

12

R 0.849 =0.02

P .4 + (.52x.35) +(1 .56x .02L

=0.50;

=P 0.47

/47 2 + *54 2 = 0.72

Therefore,

a e1.28x.7 = 2.51 (the same as before)

Hence, the required depth to achieve p S =0.90 is

D 1400 mf.
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Target Planning -- For offensive purposes, in order to insure the destruction of an

enemy installation (e.g. a tunnel) with a probability of kill, PK' the necessary weapon

system may be determined as follows:

Suppose that the target is a tunnel (of similar configuration as the one discussed

earlier) at a depth D = 500 meters; and that the material is believed to be wet tuff.
The median resisting pressure, therefore, is P = 7790 psi.

0

If shallow penetrating weapons are to be used, with CEP of 200 m, the weapon yield

W needed to achieve a kill probability of PK = 0.75 is determined as follows:

With D =500 m, and CEP = 200 m,

= 0.4

Then,

R 500/1 + (0.4)2 5 539 m.

and,

Q = 0.849 ( 2.42) = 0.12

1 + 0.4

Hence,

Qp = /0.472 + (0.52x0.35) + (1.56x0.12)2

= 0.54

and,

Cp = 0.51

Again, with P = 0.58, and Cp = 0.54,
0 0

S=/0.512 + 0.542 = 0.74

Therefore, in order to achieve PK = 0.75,

n K
....- 0.68
0.74

From which we obtain the required overkill factor;

= e0 .
68 x0 .7

4  1.65
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Hence, the median pressure necessary to destroy the tunnel is,

P = 1.65 P = 1.65x7790 = 12,850 psi

From Eq. 32 (with the appropriate coefficients for wet tuff), the required weapon yield
is,

is, P Rl.56 1.920 .16 5.s 6 _)

= 6.9x10 13  l.92 0.00

= 6.91x]O -13  (12,850)1.92 (539) 3.00

= 8,400 KT

= 8.4 1IT.

3.5 Survivability of Equipment to Ground Shocks

Mechanical and electrical equipments that are housed within a blast-resistant

building or underground shelter are primarily vulnerable to ground shocks. Depending

on the natural frequency of the equipment and its mounting, relative to those of the

ground motions, a piece of equipment may be most vulnerable to the peak acceleration,

velocity, or displacement of the forcing motions.

The survivability or vulnerability of equipment, obviously, will also depend on

the level of motions that a particular piece of equipment can tolerate before it becomes

inoperative or damaged (i.e. the fragility limit). Again, this will depend on the

characteristics of the equipment and its susceptibility to acceleration, velocity, or

displacement; however, information on the fragility limits of equipments (if available)

are invariably in terms of its tolerance to peak acceleration. Accordingly, in evaluat-

ing the survivability of equipments, the evaluation may be performed on the basis of

acceleration tolerances only.

As expected, there is considerable uncertainty in such survivability/vulnerability

evaluations. Aside from uncertainty underlying the prediction of the ground accelerations,

there is also major sources of uncertainty associated with the response of an equipment

to a specified free-field ground motion environment. Moreover, if the equipment is

mounted or attached to the interior of a building or structure, the motion to which the

equipment is subjected has been filtered through the structure and, therefore, could be

quite different from that of the free-field. The analysis or prediction of such in-

structure motions may contain further uncertainty. Finally, the information and data

available on the fragility limits of equipments are invariably limited. Moreover, when
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data are available, there is significant degree of scatter. The analysis of the different

sources of uncertainty is discussed below.

Free-Field Ground Shock Environment -- For the reasons stated above, we shall limit

the consideration of the free-field shock environment only to the ground accelerations.

Available information on free-field ground accelerations has been discussed earlier in

Sects. 2.5.2 and 3.4. Accelerations for four types of material, namely, alluvium, dry

tuff, wet tuff, and hard rock, were presented in Perret and Bass (1975). Aside from

giving the linear regression of the logarithm of ground acceleration on the logarithm

of scaled range, values of the associated "variance factors" were also given, on the

basis of which the parameter C is,

= kn (variance factor)

Thus, the following can be obtained from the results presented in Perret and Bass (1975):

Table 3: Free-Field Acceleration Uncertainty

Material Scaled Variance
Range Factor a c.o.v. a

(m/KT
1 /3)

alluvium 60-350 2.34 0.85 1.03

dry tuff 100-500 2.12 0.75 0.87

wet tuff 30-600 2.21 0.79 0.93

hard rock 90-2200 1.56 0.44 0.46

Table 3 then summarizes the level of uncertainty that can be expected in the prediction of

free-field ground shock accelerations; in particular, the last column of the above table

shows the c.o.v. ranging from 0.46 for hard rock to 1.03 for alluvium.

Shock Response of Equipment -- The shock environment to which an equipment may be

subjected will depend also on where in a structure the equipment is mounted o- attached

to. For equipments that are mounted onto the floor or an exterior wall of an underground

structure, the shock environment may essentially be that of the free-field. However, for

those equipments that may be mounted or attached to an intermediate floor or an interior

wall, the environment will be the in-structure motions at the location of the equipment,

which may be filtered and amplified from that of the free-field motions.

For equipments subject to weapon-induced shock motions, it is reasonable to assume

that the uncertainty associated with the response amplification will be comparable to

those found in the response prediction of structures subjected to strong-motion earth-

quakes. In the study of a large number of earthquakes, Mohraz, Hall, and Newmark (1974)

reported the 50 and 90-percentile values of the maximum response amplifications for

displacement, velocity, and acceleration, giving the following:
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Displacement Velocity Acceleration
Ailification Amplification Amplification

50% response 1.4 1.66 2.11

90% response 2.21 2.51 2.82

, Assuming that the respective percentile amplifications given above were based on a

Gaussian distribution, the corresponding c.o.v. are, therefore,

= 0.45

= 0.40
V

= 0.26
a

The c.o.v, obtained above would account for the uncertainty associated with the inherent

variability of a given ground motion. However, in predicting the response of an equip-

ment, there are other sources of uncertainty or factors that will affect the equipment

response; these other sources of uncertainty must also be considered. In short, the

final response of an equipment may be given as

Response NsNANd a a FF

where:

Ns = correction for site-dependent factors;

NA = correction for idealized modeling of system including soil-structure

interaction;

and, Nd = correction for damping.

The uncertainty associated with the site-dependent factors, may be assumed to be

around 20%; whereas, according to Newmark (1974) the uncertainty associated with damping

is of the order of 30%. Finally the uncertainty associated with the modeling of the

system may be conservatively assumed to be 30% (Ang and Newmark 1977).

Therefore, for equipments that are essentially subject to free-field environments,

the uncertainty in the predicted response would be as follows:
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Wet tuff" Uresponse = 0.20 -+ 0.30 + 0.26 + 0.93 2

=/0.542 + 0.93

= 1.07

Cresponse = 0.87

Hard rock:

Qeo =/0.542 + 0.462 = 0.7response

response 0.64

Dry tuff:

Qresponse =0.542 + 0.8 72

- 1.02

Cresponse 0.84

All uviurn:

Qresponse / 0.5 42 + 1.032

= 1.16

Cresponse = 0.92

The results of this uncertainty evaluation may be summarized as follows:

Table 4: Equipment Response to Free-Field Motions

Material Equipment Response Uncertainty

Q Response Response

Alluvium 1.16 0.92

Dry tuff 1.02 0.84

Wet tuff 1.07 0.87

Hard rock 0.71 0.64
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Equient Subjected to In-Structure Motions -- For equipments that are attached

to or mounted on interior walls or intermediate floors of a structure or building,

the shock environment may be significantly different from that of the free-field; the

motions are essentially in-structure motions. The analy:is or prediction of such in-

structure motions at the location of the mounting will contribute further uncertainty.

This would include, in particular, the uncertainty associated with the modeling and

idealization of the structure for analysis purposes, and the variabilities of the

structural mass and stiffness, as well as the error in the usual elastic assumption for

materials that behave inelastically in the range of behavior of interest.

Conceivably, the total uncertainty associated with the factors influencing the

in-structure motions could be of the order of 20 to 50%. A c.o.v. of 30% may be

reasonable. Hence, for equipment subjected to in-structure motions, the response

uncertainties should include this c.o.v. of 30%, in addition to those given earlier; the

results may then be summarized as follows:

Table 5: Equipment Response to In-Structure Iotions

Material Equipment Response Uncertainty

response response

Alluvium 1.20 0.94

Dry tuff 1.06 0.87

Wet tuff 1.11 0.90

Hard rock 0.77 0.60

Equipment Fragility -- The survivability of an equipment to ground shocks will, of

course, depend also on the maximum dynamic response that it can tolerate and remain

operational; this limiting response level is known as the fragility limit of the equip-

ment, and may be expressed in terms of the tolerable peak acceleration.

Aside from the maximum motion to which an equipment may be subjected, the fragility

is actually dependent also on the nature of the input excitation; in particular, whether

it is a transient shock or a vibratory-type motion will influence the fragility limit.

Evaluation of the fragility I rli ts of equipment must largely be derived from experimental

data. Such data are quite limited, however, and are available only in terms of accelera-

tion tolerance. Ranges of such tolerances have been reported by Newmark, et al (1963);

from such data the c.o.v. of the fragility limits of various generic types of equipment

may be estimated, assuming (conservatively) uniform PDF's in these ranges. Results

of such evaluation can be summarized as shown below in Table 6.
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Table 6: Equipment Fr and Uncertainty

Equipment Unmounted Mounted
Classification Range of Range of

Tolerable c.o.v. Tolerable c.o.v.
Acceleration Acceleration

Class A; Heavy
Equipment 10-30 g 0.29 20-60 g 0.29

Class B: Medium
weight machinery 15-45 g 0.29 30-90 g 0.29

Class C: Light
machinery 30-70 g 0.23 50-150 g 0.29

Class D: Communi-
cation Equipment 2-8 g 0.35 10-90 g 0.46

Class E: Small
electronic
equipment 20-80 g 0.35 50-45C g 0.46

Class F: Display
tubes 1.5-4.5 g 0.29 5-25 g 0.39

Class G: Tran-
sistorized
computers 5-20 g 0.35 20-200 g 0.47

Class H: Storage
batteries 20-120 g 0.41 50-250 g 0.39

For the purpose of estimating the uncertainties of equipment fragilities, equipments

may be divided into machinery and electrical/electronic equipment, and whether or not it

is mounted; on this basis, the following average c.o.v. may be used in general.

Table 7: Uncertainty in Equipment Fragility

Equipment
Type c.o.v.Sfragilit -  frailit

mounted unmounted mounted unmounted

Machiney 0.29 0.27 0.28 0.27

Electrical/
electronic

j i i ment 0.43 0.35 0.41 0.34
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Equipment Vulnerability to Ground Shocks -- The response spectra specified for the

design of equipments may be assumed to be the peak base motions amplified by the respec-

tive 90-percentile amplification factors. On this basis, the safety factor underlying

the design of equipments would be as follows:

Since the c.o.v. of the acceleration response amplification is 6 = 0.26, the

design spectral acceleration is

Adesign = (I + 1.28x0.26)

= 1.33A

where A is the mean spectral acceleration.

According to Newmark, et al (1963), the fragility limits (for moderate damage) of

equipments used in design are approximately the average values within the ranges pre-

sented ii Table 6; therefore, implicitly, equipments are designed for shock resistance

with a mean (or median) safety factor of around 1.33. On this basis and using the

average uncertainty information developed in Tables 4, 5 and 7, the survival probabilities

of equipments to ground shocks in different materials are as follows:

Table 8: Equipment Survival Probability pS

Free-Field Motions In-Structure Motions
Material Machinery Eec./Elec. Machinery Elec./Elec.

Equipment Equipment

Alluvium 0.62 0.61 0.62 0.61

Dry tuff 0.63 0.63 0.63 0.62

Wet tuff 0.63 0.62 0.62 0.62

Hard rock 0.67 0.66 0.66 0.65

According to the above results, equipment survivability against moderate damage, there-

fore, ranges between 61% and 67%.
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IV. SUMMARY AND CONCLUSIONS

4.1 Main Emphases of Study

The concepts of probability and statistics that are essential for applications in

engineering in general, and strategic structural problems in particular, have been

reviewed and presented. It is recognized that although mathematical methods of prob-

abilistic analysis are widely known and available, the implementation of such standard

mathematical techniques is limited and not straight-forward. The limitations and diffi-

culties are invariably associated with the lack of sufficient probabilistic information

necessary for a rigorous approach. Applications to real or realistic engineering problems

must explicitly recognize the existing state of information and take into consideration

the role of judgment. In this light, strict mathematical rigor or exactness is not always

warranted, especially if such rigor involves major complexity; in view of the fact that

subjective judgments are invariably needed to supplement existing state of information,

mathematical exactness does not necessarily mean practical validity or credibility of

results. Approximations (with resulting simplifications) that are consistent with the

quality of available information, therefore, is a more sensible approach to many practical

problems.

The necessary approximate methods of probabilistic analysis are developed for the

purpose described above. Moreover, the emphasis is on methods that are most useful for

the development of probabilistic relationships necessary for probability-based design,

in contrast to methods that may be more relevant forprobabilistic assessment. In this

regard, the concept of expected probability is stressed, as this approach avoids ambiguity

that would otherwise arise in methods that are more suited strictly for assessment purposes.

One of the main objectives of an engineering analysis is the development of relation-

ships for design. Design may be the determination of adequate structural resistance to

withstand a specified weapon effect, or the determination of an appropriate weapon system

to insure the destruction of an enemy facility. In light, or under conditions, of

uncertainty the required design can be developed to assure mission success within a given

probability of survival or probability of kill. For this purpose, therefore, proper

allowance for the effect of uncertainty on design must be provided; i.e. all sources of

uncertainty must be included, irrespective of whether it is due to inherent randomness or

associated with prediction errors. For this reason, and the resulting Unambiguity, the

total or expected probability approach is most appropriate for developing probability-

based design relationships.

The scope of the present study would not permit the total coverage and exhaustive

illustration of all aspects of strategic problems in which probability concepts and methods

may be effective. Nevertheless, the methods developed and illustrated herein could serve

to demonstrate the feasibility for implementation to other strategic problems. The ease of

implementation and clarification of the role of probability were emphasized in the develop-

ment of the material. Hopefully, this will contribute to the effective use of probability

in other areas of strategic problems.
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Additional Remarks

Because of the impossibility for absolute assurance of survivability or kill, as a

consequence of uncertainty, probability concepts are needed. A statement of probability,

therefore, refers to the degree of assurance for survival or kill. The real role of

probability and statistics in strategic planning and design, or in engineering in general,

therefore, lies in the quantitative framework for uncertainty assessment and analysis of

its effects on the performance or effectiveness of an engineering system. This role is

supplemental to the existing deterministic approach to engineering. On this premise, the

most effective way to implement probability concepts is to develop the required probability-

based relationships that can be used within the existing methods of engineering analysis

and design.

The tools and concepts presented in the report are limited to analytical methods, or

those requiring direct numerical calculation, as opposed to Monte Carlo methods that
require repeated sampling calculations. The Monte Carlo method is essentially a process

of repeated deterministic calculations, each of which is based on a specific set of values

for the pertinent variables in a problem, which are randomly chosen from the respective

populations of known or assumed distributions. As a consequence, Monte Carlo calculations

can be expensive if used indiscriminately; furthermore, the results of a Monte Carlo

calculation applies to a specific problem or condition, and do not permit generalization

or extrapolation. Monte Carlo methods, therefore, should be used with some discretion;

special situations requiring Monte Carlo calculations would include the following:

(1) When no analytical or nonrepetitive numerical methods are available.

(2) In some cases, the accuracy of approximate analytical techniques cannot be

verified except through large-sample Monte Carlo calculations.

For this latter purpose, Monte Carlo simulation is a specially effective tool.

4.2 Some Suggestions for Further Study

The basic probabilistic methodology is now generally available; however, to effectively

implement such a methodology in strategic planning and design would require the development

of information specifically needed for strategic purposes. In particular, the following

studies would be worthy of further efforts:

(1) Establish Credible Information Base for Specific Applications -- In implementing

any methodology, the result derived therewith will obviously be only as gcod as the data

and information used in its derivation; in the present case, the required input infor-
mation must include explicit measures of uncertainty. For this reason, credible measures

of uncertainty associated with the major factors and parameters underlying each type or

class of strategic problems should be carefully established. In particular, efforts should

now be directed to the careful analysis of available data for the purpose of evaluating

the uncertainty underlying the inherent randomness of nature, and the systematic documenta-

tion of judgments relative to the accuracy of current prediction models from which the

associated uncertainties due to model imperfections may be assessed. The importance of
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credible uncertainty measures cannot be over-emphasized; the usefulness of a calculated

probability of survival (or kill) would clearly depend on the credibility of the uncer-

tainty measures used in its calculation.

Efforts of this type should preferably be devoted to each type or class of strategic

problems, in order to sufficiently emphasize the unique characteristics of each problem.

Therefore, separate tasks would be necessary to fully develop the required uncertainty

information. The objective of such specific studies would be to establish the basis for

credible assessment of uncertainty; these bases should be documented systematically and

the original sources referenced in such a form that others can review and judge the
validity of the outcomes and results.

Each study should carefully and systematically review the current methods for

strategic analysis and design and the identification of all the major environmental and
system parameters. All known and accessible data pertinent to strategic design should
be reviewed and analyzed to form the information base for the respective uncertainty

measures. Where data are insufficient or lacking, experts in the fields of strategic

planning and design should be consulted for their critical input. The latter may be

obtained through one or more meetings of groups of experts to derive consensus subjective

assessments in those areas where purely judgmental opinions are required.

(2) Determination of Systems Probability -- This study should be a concerted effort

to develop approximate methods for calculating the probability of survival or failure of

a system as a function of its components. The problem is one of evaluating the probability

of a system on the basis of the corresponding probabilities of its separate components,

taking into account the significance of the system configuration (e.g. series or parallel

systems, or combinations thereof, as well as systems that may not be classified into

( simple series and parallel components), and the effect of correlations between the components.

The study should include an identification of the major types of strategic structures

and facilities, and develop appropriate calculational tools without having to resort to

brute-force Monte Carlo calculations or simulation unless necessary.

(3) Application of Statistical Decision Theory -- In a broader sense, a calculated

probability of survival (or kill) is intended to provide information on the significane

of uncertainty for the purpose of decision making. From this standpoint, the theory and

tools of statistical decision are relevant. This study should include a review of the

basic concepts of the current statistical decision theory with a view toward its potential

role and applications in the planning and design of strategic systems. The study may

include targeting and the planning of experiments, and should identify the most useful

elements of the theory of statistical decision and develop additional tools as necessary.

Specific utility functions may be reviewed and their relevancy to strategic problems

should be identified. The specific tasks of this study would include the following:

(a) Review and describe the state-of-the-art of statistical decision theory, includ-

ing the relevancy of specific utility functions.

83' i*



(b) Identify the decision criteria in strategic defense applications.

(c) Develop additional tools as necessary to implement, or facilitate the imple-

mentation of, statistical decision analysis to strategic systems.

(d) Illustrate the implementation of statistical decision analysis to specific

problems including, for example, the planning of targeting decision, defense survivability
design, and in test planning including sequential (or staged) planning of experiments.

(4) Development of Probabilistic Software for Strategic Purposes -- This study
will require the development of general-purpose computer codes for strategic purposes.

It should include the calculation of the probability of survival or kill, for general
types of probability distributions. Except for special types of probability distribu-

tions, such as the lognormal, numerical integration would generally be necessary in the

evaluation of the probability of survival or kill.

Computer codes to perform numerical integrations for derived probability distribu-

tions, such as the probability distribution of a function of several random variables,

would also be required. Finally, computer codes for evaluating the survival probability

of a general strategic system, on the basis of probabilistic information of its components,

are also needed.
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Appendix: DEFINITION OF SYMBOLS

The following is a list of the key symbols used in the report.

R = Resistance or strength

S = Load or load effect

fR(r), fs(s) = Probability density functions (PDF) of R and S, respectively.

FR(r), Fs(s) = Cumulative distribution functions (CDF) of R and S.

PF = Probability of failure

PS = Probability of survival

r, s = Median values of R and S, respectively

r, s = Estimated mean values of R and S, respectively

PR' "iS 
= Actual or true mean of R and S.

R' 'IS = Standard deviations of R and S.

C 2 S Variance of n R and kn S, respectively.

= Median safety factor, ratio r/s
o = Mean safety factor, ratio

(x) = CDF of the standard normal distribution

S-(ps), the "safety index".

= mean bias or systematic error of modeling and prediction.

= c.o.v. representing measure of uncertainty due to

inherent randomness

A = c.o.v. representing measure of uncertainty associated

with dispersive error of modeling and prediction.

Q = /-- + A 2 , total c.o.v.
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